Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 7, pp 1441–1450 | Cite as

New Tridentate Schiff Base, Product of Condensation of 4-Methyl-7-hydroxy-8-formylcoumarin and N-Aminomercaptotriazole: Synthesis, Structure, and Complex Formation

  • L. D. Popov
  • S. A. Borodkin
  • I. S. Vasil’chenko
  • V. G. Vlasenko
  • G. S. Borodkin
  • Ya. V. Zubavichus
  • S. I. Levchenkov
  • Yu. P. Tupolova
  • Yu. V. Revinskii
  • I. N. Shcherbakov
Article

Abstract

A new Schiff base was prepared by the reaction of 4-methyl-7-hydroxy-8-formylcoumarin with N-aminomercaptotriazole. In solution and in solid phase the compound was shown to exist in the thione form. The compound reacts with Cu(II), Ni(II), Zn(II) and Cd(II) ions depending on the metal salt to give complexes of composition ML2 or MHLX, where HL is monodeprotonated form of the ligand. Cu(II) and Ni(II) complexes were studied by spectral and magnetochemical methods. The Zn(II) and Cd(II) complexes exhibit fluorescence.

Keywords

Schiff base metal complexes 4-methyl-7-hydroxy-8-formylcoumarin N-aminomercaptotriazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krause, M., Rouleau, A., Stark, H., Luger, P., Lipp, R., Garbarg, M., Schwartz, J.-C., and Schunack, W., J. Med. Chem., 1995, vol. 38, no. 20, p. 4070. doi 10.1021/jm00020a022CrossRefGoogle Scholar
  2. 2.
    Hui, M.B.V., Lien, E.J., and Trousdale, M.D., Antivir. Res., 1994, vol. 24, no. 4, p. 261. doi 10.1016/0166-3542(94)90074-4CrossRefGoogle Scholar
  3. 3.
    Lewinski, J., Zachara, J., Justyniak, I., and Dranka, M., Coord. Chem. Rev., 2005, vol. 249, nos. 11–12, p. 1185. doi 10.1016/j.ccr.2004. 11.013CrossRefGoogle Scholar
  4. 4.
    Kleij, A.W., Chem. Eur. J., 2008, vol. 14, no. 34, p. 10520. doi 10.1002/chem.200801149CrossRefGoogle Scholar
  5. 5.
    Garnovskii, A.D., Nivorozhkin, A.L., and Minkin, V.I., Coord. Chem. Rev., 1993, vol. 126, nos. 1–2, p. 1. doi 10.1016/0010-8545(93)85032-Y.CrossRefGoogle Scholar
  6. 6.
    Garnovskii, A.D., Burlov, A.S., Vasil’chenko, I.S., Garnovskii, D.A., Uraev, A.I., and Sennikova, E.V., Russ. J. Coord. Chem., 2010, vol. 36, no. 2, p. 81. doi 10.1134/S1070328410020016CrossRefGoogle Scholar
  7. 7.
    Chattopadhyay, A., Meier, M., Ivaninskii, S., Burkhard, P., Speroni, F., Campanini, B., Bettati, S., Mozzarelli, A., Rabeh, W.M., Li, L., and Cook, P.F., Biochemistry, 2007, vol. 46, no. 28, p. 8315. doi 10.1021/bi602603cCrossRefGoogle Scholar
  8. 8.
    Montagner, C., de Souza, S.M., Groposo, C., Delle Monache, F., Smania, E.F.A., and Smania, Jr.A., Z. Naturforsch. C, 2008, vol. 63, nos. 1–2, p. 21. doi 10.1515/znc-2008-1-205CrossRefGoogle Scholar
  9. 9.
    Minkin, V.I., Tsukanov, A.V., Dubonosov, A.D., and Bren, V.A., J. Mol. Struc., 2011, vol. 998, nos. 1–3, p. 179. doi 10.1016/j.molstruc.2011.05.029CrossRefGoogle Scholar
  10. 10.
    Uzhinov, B.M. and Khimich, M.N., Russ. Chem. Rev., 2011, vol. 80, no. 6, p. 553. doi 10.1070/RC2011v080n06ABEH004144CrossRefGoogle Scholar
  11. 11.
    Ohshima, A., Momotake, A., Arai, T., J. Photochem. Photobiol. (A), 2004, vol. 162, nos. 2–3, p. 473. doi 10.1016/S1010-6030(03)00388-5CrossRefGoogle Scholar
  12. 12.
    Harada, J., Uekusa, H., and Ohashi, Y., J. Am. Chem. Soc., 1999, vol. 121, no. 24, p. 5809. doi 10.1021/ja9842969CrossRefGoogle Scholar
  13. 13.
    Seo, K.D., Song, H.M., Lee, M.J., Pastore, M., Anselmi, C., De Angelis, F., Nazeeruddin, M.K., Graetzel, M., and Kim, H.K., Dyes Pigments, 2011, vol. 90, no. 3, p. 304. doi 10.1016/j.dyepig.2011.01.009CrossRefGoogle Scholar
  14. 14.
    Traven’, V.F., Ivanov, I.V., Panov, A.V., Safronova, O.B., and Chibisova, T.A., Russ. Chem. Bull., 2008, vol. 57, no. 9, p. 1989. doi 10.1007/s11172-008-0267-5CrossRefGoogle Scholar
  15. 15.
    Bagihalli, G.B., Avaji, P.G., Badami, P.S., and Patil, S.A., J. Coord. Chem., 2008, vol. 61, no. 17, p. 2793. doi 10.1080/00958970801975109CrossRefGoogle Scholar
  16. 16.
    Yan, M.-H., Li, T.-R., and Yang, Z.-Y., Inorg. Chem. Commun., 2011, vol. 14, no. 3, p. 463. doi 10.10316/j.inoche.2010.12.027CrossRefGoogle Scholar
  17. 17.
    An, J.-M., Yang, Z.-Y., Yan, M.-H., and Li, T.-R., J. Luminescence, 2013, vol. 139, p. 79. doi 10.10316/j.jlumin.2013.02.019CrossRefGoogle Scholar
  18. 18.
    Xie, L., Chen, Y., Wu, W., Guo, H., Zhao, J., and Yu, X., Dyes Pigments, 2012, vol. 92, no. 3, p. 1361. doi 10.1016/j. dyepig.2011.09.023CrossRefGoogle Scholar
  19. 19.
    Kulkarni, A.D., Bagihalli, G.B., Patil, S.A., and Badami, P.S., J. Coord. Chem., 2009, vol. 21, no. 18, p. 3060. doi 10.1080/00958970902914569CrossRefGoogle Scholar
  20. 20.
    Chen, F., Liu, G., Shi, Y., Xi, P., Cheng, J., Hong, J., Shen, R., Yao, X., Bai, D., and Zeng, Z., Talanta, 2014, vol. 124, p. 139. doi 10.1016/j.talanta.2014.02.034CrossRefGoogle Scholar
  21. 21.
    Singh, K., Puri, P., Kumar, Y., and Sharma, C., Phosphorus, Sulfur, Silicon, Relat. Elem., 2013, vol. 188, no. 10, p. 1462. doi 10.1080/10426507.2012.757609CrossRefGoogle Scholar
  22. 22.
    Kumar, M.S., Tamilarasan, R., and Sreekanth, A., Spectrochim. Acta. (A), 2011, vol. 79, no. 2, p. 370. doi 10.1016/j.saa.2011.03.030CrossRefGoogle Scholar
  23. 23.
    Heshmatpour, F., Ghassemzadeh, M., Semsarha, M., and Neumuller, B., Z. Anorg. Allg. Chem., 2007, vol. 633, no. 3, p. 465. doi 10.1002/zaac.200600342CrossRefGoogle Scholar
  24. 24.
    Ko, K.C., Wu, J.-S., Kim, H.J., Kwon, P.S., Kim, J.W., Bartsch, R.A., Lee, J.Y., and Kim, J.S., Chem. Commun., 2011, vol. 47, no. 11, p. 3165. doi 10.1039/C0CC05421FCrossRefGoogle Scholar
  25. 25.
    Talrose, V., Yermakov, A.N., Usov, A.A., Goncharova, A.A., Leskin, A.N., Messineva, N.A., Trusova, N.V., and Efimkina, M.V., UV-Visible Spectra in NIST Chemistry. NIST Standard Reference Database Number 69, Linstrom, P.J. and Mallard, W.G., Eds., Gaithersburg: National Institute of Standards and Technology, 2017. doi 10.18434/T4D303Google Scholar
  26. 26.
    Montanaro, D., Lavecchia, R., Petrucci, E., and Zuorro, A., Chem. Eng. J., 2017, vol. 323, p. 512. doi 10.1016/j.cej.2017.04.129CrossRefGoogle Scholar
  27. 27.
    Orysyk, S.I., Repich, G.G., Bon, V.V., Dyakonenko, V.V., Orysyk, V.V., Zborovskii, Yu.L., Shishkin, O.V., Pekhnyo, V.I., and Vovk, M.V., Inorg. Chim. Acta, 2014, vol. 423, p. 496. doi 10.1016/j.ica.2014.08.056CrossRefGoogle Scholar
  28. 28.
    Parker, C.A., Photoluminescence of Solutions, Amsterdam: Elsevier, 1968.Google Scholar
  29. 29.
    Chernyshov, A.A., Veligzhanin, A.A., and Zubavichus, Y.V., Nucl. Instrum. Methods Phys. Res. (A), 2009, vol. 603, nos. 1–2, p. 95. doi 10.1016/j.nima.2008.12.167CrossRefGoogle Scholar
  30. 30.
    Newville, M., J. Synchrotron Rad., 2001, vol. 8, no. 2, p. 96. doi 10.1107/S0909049500016290CrossRefGoogle Scholar
  31. 31.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., Albers, R.C., and Eller, M.J., Phys. Rev. (B), 1995, vol. 52, no. 4, p. 2995. doi 10.1103/PhysRevB.52.2995CrossRefGoogle Scholar
  32. 32.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, Jr.T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision, E.1., 2003.Google Scholar
  33. 33.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623. doi 10.1021/j100096a001CrossRefGoogle Scholar
  34. 34.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  35. 35.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  36. 36.
    Tsipis, A.C., Coord. Chem. Rev., 2014, vol. 272, p. 1. doi 10.1016/j.ccr.2014.02.023CrossRefGoogle Scholar
  37. 37.
    Wang, Y.-G., J. Phys. Chem. (A), 2009, vol. 113, no. 41, p. 10867. doi 10.1021/jp904007jCrossRefGoogle Scholar
  38. 38.
    Furche, F. and Rappoport, D., Theor. Comput. Chem., 2005, vol. 16, p. 93. doi 10.1016/S1380-7323(05)80020-2CrossRefGoogle Scholar
  39. 39.
    Miertus, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117. doi 10.1016/0301-0104(81)85090-2CrossRefGoogle Scholar
  40. 40.
    Cammi, R. and Tomasi, J., J. Comput. Chem., 1995, vol. 16, p. 1449. doi 10.1002/jcc.540161202CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. D. Popov
    • 1
  • S. A. Borodkin
    • 1
  • I. S. Vasil’chenko
    • 2
  • V. G. Vlasenko
    • 3
  • G. S. Borodkin
    • 2
  • Ya. V. Zubavichus
    • 4
  • S. I. Levchenkov
    • 1
    • 5
  • Yu. P. Tupolova
    • 1
  • Yu. V. Revinskii
    • 5
  • I. N. Shcherbakov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Rostov-on-Don, Research Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Rostov-on-Don, Research Institute of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  4. 4.National Research Center “Kurchatov Institute,”MoscowRussia
  5. 5.Southern Scientific Center of the Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations