Skip to main content
Log in

Effect of Structure and Medium on Photostability of Halogenated Boron(III), Zinc(II), and Cadmium(II) Dipyrromethenates

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Photostability of B(III), Zn(II), Cd(II) complexes with monoiodo- and dibromosubstituted dipyrromethenes [BF2L] and [ML2] in benzene and cyclohexane solutions is studied. It is found that the mechanism of destruction of the dyes under UV radiation is based on participation of singlet oxygen generated by the excited triplet state of the dye. Singlet oxygen enters the oxidation reactions of the pigment molecules leading to accumulation of colorless products based on di-, monopyrrol, and smaller fragments. Initial stages of the process include the reactions of dehalogenation of the dye molecules and are accompanied by enhancement of the fluorescence of the formed alkyl-substituted dipyrromethenates. The photostability of boron complexes [BF2L] is up to 32 times higher as compared to that of [ZnL2] and [CdL2]. The replacement of 4-iododipyrromethene ligands in [BF2L] and [ML2] by 5,5'-or 4,4'-dibromo-substituted ligands increases photostability of the dyes. The stability of the dyes against UV irradiation substantially decreases in benzene with respect to cyclohexane due to enhancement of polarization of the chromophore systems of dipyrromethene ligands because of their solvation with benzene (ππ-stacking).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Awuah, S.G., Polreis, J., Biradar, V., and You, Y., Org. Lett., 2011, vol. 13, p. 3884. doi 10.1021/ol2014076

    Article  CAS  PubMed  Google Scholar 

  2. Pang, W., Zhang, X.F., Zhou, J., Yu, C., Hao, E., and Jio, L., Chem. Commun., 2012, vol. 48, p. 5437. doi 10.1039/C2CC30915G

    Article  CAS  Google Scholar 

  3. Lim, S., Thivierge, C., Nowak-Sliwinska, P., Han, J., Van den Bergh, H., Wagnieres, G., Burgess, K., and Lee, H., J. Med. Chem., 2010, vol. 53, p. 2865. doi 10.1021/jm901823u

    Article  CAS  PubMed  Google Scholar 

  4. Lincoln, R., Durantini, A.M., Greene, L.E., Marthnez, S.R., Knox, R., Becerra, M.C., and Cosa, G., Photochem. Photobiol. Sci., 2017, vol. 16, p. 178. doi 10.1039/c6pp00166a

    Article  CAS  PubMed  Google Scholar 

  5. Ra, C., Xu, X., Raymond, S.B., Ferrara, B.J., Neal, K., Bacskai, B.J., Medarova, Z., and Moore, A., J. Am. Chem. Soc., 2009, vol. 31, p. 15257. doi 10.1021/ja9047043

    Google Scholar 

  6. Boyer, J.H., Haag, A.M., Sathyamoorthi, G., Soong, M.L., Thangaraj, K., and Pavlopoulos, T., Heteroatom Chem., 1993, vol. 4, p. 39. doi 10.1002/XK.520040107.

    Article  CAS  Google Scholar 

  7. Nuraneeva, E.N., Guseva, G.B., Antina, E.V., Berezin, M.B., and V’yugin, A.I., J. Lumin., 2016, vol. 170, p. 248. doi 10.1016/j.jlumin.2015.10.061

    Article  CAS  Google Scholar 

  8. Nuraneeva, E.N., Guseva, G.B., Antina, E.V., Kuznetsova, R.T., Berezin, M.B., and V’yugin, A.I., Russ. J. Gen. Chem., 2016, vol. 86, no. 4, p. 840. doi 10.1134/S1070363216040149

    Article  CAS  Google Scholar 

  9. King, E.R. and Betley, T.A., J. Am. Chem. Soc., 2009, vol. 131, p. 14374. doi 10.1021/ja903997a

    Article  CAS  PubMed  Google Scholar 

  10. Plavskii, V.Y., Mostovnikov, V.A., Tret’yakova, A.I., and Mostovnikova, G.R., J. Appl. Spectr., 2008, vol. 75, p. 407. doi 10.1007/s10812-008-9061-2

    Article  CAS  Google Scholar 

  11. Yutanova, S.L., Berezin, M.B., Kuznetsova, R.T., Asenova, Y.V., and Tel’minov, E.N., Russ. Phys. J., 2013, vol. 56, no. 3, p. 264. doi 10.1007/s11182-0130-0025-5

    Article  CAS  Google Scholar 

  12. Guseva, G.B., Antina, E.V., Beresin, M.B., V’yugin, A.I., and Nuraneeva, E.N., Russ. J. Gen. Chem., 2013, vol. 83, no. 8, p. 1571. doi 10.1134/S1070363213080161

    Article  CAS  Google Scholar 

  13. Berezin, B.D., Coordination Compounds of Porphyrins and Phthalocyanines, Toronto: John Wiley, 1981.

    Google Scholar 

  14. Guseva, G.B., Antina, E.V., Ksenofontov, A.A., and Nuraneeva, E.N., J. Struct. Chem., 2016, vol. 57, p. 25. doi 10.1134/S0022476616010042

    Article  CAS  Google Scholar 

  15. Berezin, B.D. and Enikolopyan, N.S., Metalloporfiriny (Metalloporphyrins), Moscow: Nauka, 1988.

    Google Scholar 

  16. Antina, E.V. and Rumyantsev, E.V., Khimiya bilirubina i ego analogov (Chemistry of Bilirubin and Its Analogues), Moscow: Krasand, 2009.

    Google Scholar 

  17. Kautsky, H., Trans. Faraday Soc., 1939, vol. 35, p. 216. doi 10.1039/TF9393500216

    Article  CAS  Google Scholar 

  18. Investigations of Rates and Mechanisms of Reactions, Techniques of Chemistry, Hammes, G.G., Ed., New York: Wiley Interscience, 1974, vol. 6, part II, 3rd ed.

  19. Wang, X.M., Zhou, Y.F., Yu, W.T., Wang, C., Fang, Q., Jiang, M.H., Lei, H., and Wang, H.Z., J. Mater. Chem., 2000, vol. 10, p. 2698. doi 10.1039/B006764O

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Guseva.

Additional information

Original Russian Text © E.N. Nuraneeva, Е.V. Antina, G.B. Guseva, М.B. Berezin, А.I. V’yugin, 2018, published in Zhurnal Obshchei Khimii, 2018, Vol. 88, No. 6, pp. 992–999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuraneeva, E.N., Antina, E.V., Guseva, G.B. et al. Effect of Structure and Medium on Photostability of Halogenated Boron(III), Zinc(II), and Cadmium(II) Dipyrromethenates. Russ J Gen Chem 88, 1172–1179 (2018). https://doi.org/10.1134/S1070363218060208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363218060208

Keywords

Navigation