Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 797–803 | Cite as

Preparation and Spectroscopic Studies of Charge-Transfer Complexes of Thiamine Hydrochloride with Different Electron Acceptor

  • O. Saoudi
  • S. M. Teleb
  • A. S. Gaballa


Abstract—Electronic interactions associated with charge transfer complexes formation of iodine, chloranilic acid (H2CA) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) with vitamin B1 have been studied spectrophotometrically. The accumulated data indicated formation of CT-complexes of the general formula [(VB1)(acceptor) n ], (n = 1 or 2). The 1 : 2 and 1 : 1 donor: acceptor molar ratios were calculated on the basis of elemental analysis and photometric titrations. The solid complexes were prepared and characterized by their conductivity, UV-Vis, IR, and 1H NMR spectra, and thermogravimetric analyses (TGA, DTG). The characteristic physical constants (KCT, εCT, μ, ΔG, Ip, f, ECT) of the formed CT-complexes were determined to be strongly dependent on nature of the electron acceptors.


charge-transfer vitamin B1 iodine H2CA DDQ UV-Vis IR 1H NMR TGA DTG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutmann, F., Johnson, C., Keyzer, H., and Molnár, J., Charge-Transfer Complexes in Biochemical Systems, Marcel Dekker Inc., 1997.Google Scholar
  2. 2.
    Foster, R., Organic Charge-Transfer Complexes, London: Academic Press, 1969.Google Scholar
  3. 3.
    Mulliken, R.S. and Person, W.B., Molecular Complexes, New York: Wiley Intersci., 1969.Google Scholar
  4. 4.
    (a) Licht, S., Sol. Energy Matter. Sol. Cells, 1995, vols. 38–35, p. 305 doi 10.1016/0927-0248(94)00229-0.CrossRefGoogle Scholar
  5. (b).
    Salem, H., J. Pharm. Biomed. Anal., 2002, vol. 29, p. 527. doi 10.1016/S0731-7085(02)00100-0CrossRefPubMedGoogle Scholar
  6. 5.
    (a) Feng, J., Zhong, H., Beijing Daxue Xuebao (Ziran Kexue Ban) Acta, 1991, vol. 27(6), p. 691; ISSN 0476–0301.Google Scholar
  7. (b).
    Flores, V.C., Keyzer, H.,Varkey-Johnson, C., and Young, K.L., Org. Conduct. Appl. Phys., 1994, p. 691.Google Scholar
  8. 6.
    Bebawy, L.I., El-Kelani, K., Abdel-Fattah, L., and Ahmed, A.S., J. Pharm. Sci.,1997, vol. 86(9), p. 1030. doi 10.1021/js960504oCrossRefPubMedGoogle Scholar
  9. 7.
    Krause’s Food, Nutrition, and Diet Therapy, Mahan, L.K. and Escott-Stump, S., Eds., Philadelphia: W.B. Saunders Company, 2000, 10 ed. ISBN 0-7216-7904-8.Google Scholar
  10. 8.
    Combs, G.F.Jr., The Vitamins: Fundamental Aspects in Nutrition and Health, Ithaca: Elsevier Academic Press, 2008, 3 ed. ISBN 978-0-12-183493-7.Google Scholar
  11. 9.
    Gould, E.S., Structure and Mechanism in Organic Chemistry, New York: Holt, 1959; p. 394.Google Scholar
  12. 10.
    Ugai, T., Tanaka, S., and Dokawa, S., J. Pharm. Soc. Jpn., 1943, vol. 63, p. 269.Google Scholar
  13. 11.
    Mohrig, J.R., Hammond, C.N., Morrill, T.C., and Neckers, D.C., Experimental Organic Chemistry, New York: Freeman, 1998, p. 419.Google Scholar
  14. 12.
    Mohrig, J.R. and Neckers, D.C., Laboratory Experiments in Organic Chemistry, New York: Van Nostrand, 1973, 2 ed., p. 868.Google Scholar
  15. 13.
    Cerny, C. and Firmenich, S.A., Origin of Carbons in Sulfur-Containing Aroma Compounds from the Maillard Reaction of Xylose, Cysteine and Thiamine, Geneva, 2006.Google Scholar
  16. 14.
    Gaballa, A.S., Wagner, C., Nour, E.M., Teleb, S.M., Elmosallamy, M.A.F., Kaluđerović, G.N., Schmidt, H., and Steinbon, D., J. Mol. Struct., 2008, vol. 876, p. 301. doi 10.1016/j.molstruc.2007.07.003CrossRefGoogle Scholar
  17. 15.
    Gaballa, A.S., Indian J. Chem. A, 2005, vol. 44, p. 1372.Google Scholar
  18. 16.
    Teleb, S.M., Gaballa, A.S., Elmosallamy, M.A.F., and Nour, E.M., Spectrochim. Acta A, 2005, vol. 61, nos. 11–12, p. 2708. doi 10.1016/j.saa.2004.10.014CrossRefGoogle Scholar
  19. 17.
    Teleb, S.M., Elmosallamy, M.A.F., Gaballa, A.S., and Nour, E.M., J. Appl. Sci., 2005, vol.7(2), p. 27. ISSN 1605–2587.Google Scholar
  20. 18.
    Gaballa, A.S., Teleb, S.M., Rusanov, E., and Steinborn, D., J. Inorg. Chim. Acta, 2004, vol. 357, p. 4144. doi 10.1016/j.ica.2004.06.004CrossRefGoogle Scholar
  21. 19.
    (a) Skoog, D.A., Principle of Instrumental Analysis, New York: Saunder College Publishing, 1985, 3 ed., ch.7.Google Scholar
  22. (b).
    Nour, E.M., AlQaradawi, S.Y., Mostafa, A., Shams, E., and Bazzi, H.S., J. Mol. Struct., 2010, vol. 980, p. 218. doi 10.1016/j.molstruc.2010.07.017CrossRefGoogle Scholar
  23. 20.
    (a) Amin, A.S., El-Sayed, G.O., and Issa, Y.M., Analyst, 1995, p. 120.Google Scholar
  24. (b).
    Ahmed, M.M.A., Bull. Fac. Sc. Assuit Univ., 1993, vol. 22, no. 2B, p. 167.Google Scholar
  25. (c).
    Issa, Y.M. Hassib, H.B., El-Ansary, A.L., and Henein, S.Z., ACHModels Chem., 1994, vol. 131(5), p. 607.Google Scholar
  26. 21.
    (a) Abou-Ettah, R. and El-Korashy, A., J. Phys. Chem., 1972, vol. 76, p. 2405.CrossRefGoogle Scholar
  27. (b).
    El-Kourashy, A., Spectrochim. Acta A, 1981, vol. 37, p. 399.CrossRefGoogle Scholar
  28. 22.
    Tsubomura, H. and Lang, R.P., J. Am. Chem. Soc., 1964, vol. 86, p. 3930.CrossRefGoogle Scholar
  29. 23.
    Rathone, R., Lindeman, S.V., and Kochi, J.K., J. Am. Chem. Soc., 1997, vol. 119, p. 9393.CrossRefGoogle Scholar
  30. 24.
    (a) Aloisi, G., Pignataro, S., J. Chem. Soc. Faraday Trans., 1972, vol. 69, p. 534.CrossRefGoogle Scholar
  31. (b).
    Briegleb, G., Z. Angew. Chem., 1960, vol. 72, p. 401.CrossRefGoogle Scholar
  32. (c).
    Briegleb, G., Z. Angew. Chem., 1964, vol. 76, p. 326.CrossRefGoogle Scholar
  33. 25.
    Martin, A.N., Swarbrick, J., and Cammarata, A., Physical Pharmacy, Philadelphia: Lee and Febiger, 1969, 3 ed., p. 344.Google Scholar
  34. 26.
    Güzler, H. and Germlich, H., IR Spectroscopy: An Introduction, Weinheim: Wiely-VCH Verlag GmbH, 2002.Google Scholar
  35. 27.
    Adam, A.A., Spectrochim. Acta A, 2013, vol. 104, p. 1. doi 10.1016/j.saa.2012.11.042CrossRefGoogle Scholar
  36. 28.
    (a) Gaballa, A.S., Teleb, S.M., and Nour, E.M., J. Mol. Struct., 2012, vol. 1024, p. 32; doi 10.1016/j.molstruc.2012.04.092.CrossRefGoogle Scholar
  37. (b).
    Ali, M.M., Gaballa, A.S., and Teleb, S.M., Russ. J. Gen. Chem., 2015, vol. 85, no. 3, p. 731. doi 10.1134/S1070363215020322CrossRefGoogle Scholar
  38. 29.
    Mayo, D.W., Miller, F.A., and Hannah, R.W., Course Notes on the Interpretation of Infrared and Raman Spectra, New York: Wiley, 2003.Google Scholar
  39. 30.
    Muhtadi, F.J., Anal. Profiles Drug Subst., 1984, vol. 13, p. 737.CrossRefGoogle Scholar
  40. 31.
    Azeem, S.W., Khan, M.A., and Ahmad, I., Pak. J. Pharm. Sci., 2005, vol. 18, p. 33. ISSN 1011-601X.PubMedGoogle Scholar
  41. 32.
    Mitchell, T.N., and Costisella, B., NMR: From Spectra to Structures, An Experimental Approach, Berlin: Springer, 2 ed., 2007.Google Scholar
  42. 33.
    Happe, J. and Ward, R., J. Chem. Phys., 1963, vol. 39, p. 1211.CrossRefGoogle Scholar
  43. 34.
    Lounasmaa, M. and Tolvanen, A., Heterocycles, 1988, vol. 23, p. 372.Google Scholar
  44. 35.
    Hassib, H.B. and Issa, Y.M., J. Anal. Chem., 1996, vol. 39, p. 329.Google Scholar
  45. 36.
    Teleb, S.M. and Gaballa, A.S., Spectrochim. Acta Part A., 2005, vol. 62, nos. 1–3, p. 140. doi 10.1016/j.saa.2004.12.017CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Faculty of Specific EducationZagazig UniversityZagazigEgypt

Personalised recommendations