Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 767–773 | Cite as

Physicochemical and Biological Studies on Xipamide and Some of Its Complexes

  • W. H. El-Shwiniy
  • N. A. Mobasher
  • M. G. Abd Elwahed
  • S. M. Teleb


The new complexes of xipamide (XPD) with Ti(III), Ni(II), Pd(II), Zr(IV), Ce(IV), and U(VI) have been synthesized. Elemental analysis, magnetic properties, molar conductivities, thermal analysis, and UV-Vis, IR and 1H NMR spectra, elucidated the structures of complexes. According to spectral data, xipamide behaved in the obtained complexes as a bidentate chelating anion with the charge (–1) and coordinated via oxygen atoms of the deprotonated phenolic and carbonyl groups. Kinetic parameters of thermogravimetric analysys and its differential have been evaluated by using the Coats–Redfern and Horowitz–Metzeger methods. Thermodynamic data indicated thermal stability of all complexes. The ligand and its metal complexes were screened for their antifungal activity against A. fumigatus,G. candidum, syncephalastrum, and C. albicans, and antibacterial activities against two Gram-positive bacteria species, such as S. aureus and B. subtilis, two Gramnegative such as E. coli and P. aeruginosa.


XPD metal complexes TG 1H NMR FT-IR antibacterial 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raman, N., Muthuraj, V., Ravichandran, S., and Kulandaisamy, A., J. Chem. Sci., 2003, vol. 115, p. 161. doi 10.1007/BF02704255CrossRefGoogle Scholar
  2. 2.
    Nasaret, C., Diez, J., Hannaert, P.A., Christen, M., Wierzbicki, N., and Garay, R.P., Eur. J. Pharm., 1987, vol. 144, p. 353. doi 10.1016/0014-2999(87)90388-8CrossRefGoogle Scholar
  3. 3.
    Al-Kady, A.S., Sensors and Actuators B, 2012, vols. 166–167, p. 485. doi 10.1016/j.snb.2012.02.091CrossRefGoogle Scholar
  4. 4.
    Gaber, M., Khedr, A.M., and Al-Kady, A.S., Int. Res. J. Pharm. Pharmacol., 2011, vol. 1, p. 215. doi 10.1016/j.jtusci.2013.11.002Google Scholar
  5. 5.
    Attia, M.S., Yuossef, A.O., Diab, M., and El-Shahat, M.F., J. Adv. Chem., 2014, vol. 10, p. 2720. doi 10.1021/ac101033jCrossRefGoogle Scholar
  6. 6.
    Muresan, V., Sbirna, L.S., Sbirna, S., Lepadatu, C.I., and Muresan, N., Act. Chim. Slov., 2001, vol. 48, p. 439.Google Scholar
  7. 7.
    Choudhary, A., Sharma, R., Nagar, M., Mohsin, M., J. Enzym. Inhib. Med. Chem., 2011, vol. 26, p. 394. doi 10.3109/14756366.2010.518966CrossRefGoogle Scholar
  8. 8.
    Ghosh, S., Der Pharma Chemica, 2012, vol. 5, p. 485.Google Scholar
  9. 9.
    El-Shwiniy, W.H. and Sadeek, S.A., Spectrochim. Acta A, 2015, vol. 137, p. 535. doi org/10.1016/j.saa.2014.08.124CrossRefGoogle Scholar
  10. 10.
    Sadeek, S.A. and El-Shwiniy, W.H., J. Iran Chem. Soc., 2017, vol. 14, p. 1711. doi 10.1007/s13738-017-1112-2CrossRefGoogle Scholar
  11. 11.
    Vogel, A.I., Quantitative Inorganic Analysis, London: Longman, 1959.Google Scholar
  12. 12.
    Geary, W.J., Coord. Chem. Rev., 1971, vol. 7, p. 81. doi 10.1016/S0010-8545(00)80009-0CrossRefGoogle Scholar
  13. 13.
    Bhatand, V.D. and Ray, A., Synth. Met., 1998, vol. 92, p. 115. doi 10.1021/bi00459a036CrossRefGoogle Scholar
  14. 14.
    Prakash, D., Kumar, C., Prakash, S., Gupta, A.K., and Singh, K.R.R.P., J. Ind. Chem. Soc., 2009, vol. 86, p. 1257. doi 10.1155/2015/607178Google Scholar
  15. 15.
    Guzler, H. and Germlich, H., IR Spectroscopy: An Introduction, Weinheim: Wiley, 2002. ISBN: 978-3-527-28896-0.Google Scholar
  16. 16.
    Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986, 4th ed., p. 230.Google Scholar
  17. 17.
    Bellamy, L.J., The Infrared Spectra of Complex Molecules, London: Chapman and Hall, 1975.CrossRefGoogle Scholar
  18. 18.
    Nassar, M.Y., Mohamed, T.Y., and Ahmed, I.S., J. Mol. Struct., 2013, vol. 1050, p. 81. doi 10.1016/j.molstruc.2013.07.027CrossRefGoogle Scholar
  19. 19.
    Garg, R., Fahmi, N., and Singh, R.V., Ind. Chem. Soc., 2009, vol. 86, p. 670. doi 10.1016/j.jscs.2011.09.013Google Scholar
  20. 20.
    King, D.E., Malone, R., and Lilley, S.H., Am. Fam. Phys., 2000, vol. 61, p. 2741. PMID: 10821154.Google Scholar
  21. 21.
    Pasomas, G., Tarushi, A., and Efthimiadou, E.K., Polyhedron, 2008, vol. 27, p. 133. doi 10.1016/j.poly.2007.08.043CrossRefGoogle Scholar
  22. 22.
    Sadeek, S.A. and EL-Shwiniy, W.H., J. Mol. Struct., 2010, vol. 977, p. 243. doi 10.1016/j.molstruc.2010.05.041CrossRefGoogle Scholar
  23. 23.
    Cotton, F.A. Wilkinson, G., Murillo, C., and Bochmann, M., Advanced Inorganic Chemistry, New York: Wiley, 6th ed., 1999.Google Scholar
  24. 24.
    Lever, A.B.P., Inorganic Electronic Spectroscopy, Amsterdam: Elsevier, 1984.Google Scholar
  25. 25.
    Lewis, J. and Wilins, R.G., Modern Coordination Chemistry, New York: Interscience, 1960.Google Scholar
  26. 26.
    Skauge, T., Turel, I., and Sletten, E., Inorg. Chem. Acta., 2002, vol. 339, p. 247. doi 10.1016/S0020-1693(02) 00933-7CrossRefGoogle Scholar
  27. 27.
    Sestak, J., Satava, V., and Wendlandt, W.W., Thermochim. Acta, 1973, vol. 7, p. 333. doi 10.1016/0040-6031(84)87032-XCrossRefGoogle Scholar
  28. 28.
    Wendlandt, W.W., Thermal Methods of Analysis, in Chemical Analysis, New York: John Wiley and Sons, 1974, vol. 19, p. 99. doi 10.1021/ed042pA549Google Scholar
  29. 29.
    Kofstad, P., Nature, 1957, vol. 179, p. 1362. doi 10.1038/1791362a0CrossRefGoogle Scholar
  30. 30.
    Nair, M.K.M. and Radhakrishnan, P.K., Thermochim. Acta, 1995, vol. 261, p. 141. doi 10.1016/0040-6031(95) 02313-QCrossRefGoogle Scholar
  31. 31.
    Frost, A.A. and Pearson, R.G., Kinetics and Mechanism: A Study of Homogenous Chemical Reaction, New York: Wiley, 1961, ch. 10.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • W. H. El-Shwiniy
    • 1
  • N. A. Mobasher
    • 1
  • M. G. Abd Elwahed
    • 1
  • S. M. Teleb
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations