Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 731–735 | Cite as

Functionalized Polynorbornenes with Oligoether Units and Luminophoric Iridium(III) Complexes in Side Chains. Synthesis, Photophysical, and Biological Properties

  • E. O. Platonova
  • A. V. Rozhkov
  • S. A. Lermontova
  • L. G. Klapshina
  • A. N. Konev
  • L. N. Bochkarev
  • G. A. Abakumov


Copolymers with oligoether units and luminophoric iridium(III) complexes in the side chains have been synthesized via metathesis polymerization. The copolymers containing different luminophoric iridium(III) complexes have exhibited strong green, blue-green, or red photoluminescence. The copolymers are soluble in water, forming micelles with average size 14‒20 nm. The copolymer with red photoluminescence has low cytotoxicity with respect to epidermoid human carcinoma cells (line A431).


functionalized polynorbornenes metathesis polymerization iridium-containing polymers luminophoric iridium(III) complex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was financially supported by the Russian Foundation for Basic Research (project nos. 15-43-02178-r_povolzh’e_a, 16-33-0234-mol_a, 16-34-60117-mol_a_dk).


  1. 1.
    Bielawski, C.W. and Grubbs, R.H., Progr. Polym. Sci., 2007, vol. 32, p. 1. doi 10.1016/j.progpolymsci.2006.08.006CrossRefGoogle Scholar
  2. 2.
    Leitgeb, A., Wappel, J., and Slugovc, C., Polymer, 2010, vol. 51, p. 2927. doi 10.1016/j.polymer.2010.05.002CrossRefGoogle Scholar
  3. 3.
    Zaquen, N., Lutsen, L., Vanderzande, D., and Junkers, T., Polym. Chem., 2016, vol. 7, p. 1355. doi 10.1039/c5py01987gCrossRefGoogle Scholar
  4. 4.
    Feng, K., Zuniga, C., Zhang, Y.-D., Kim, D., Barlow, S., Marder, S.R., and Brédas, J.L., Weck, M., Macromolecules, 2009, vol. 42, p. 6855. doi 10.1021/ma901280xCrossRefGoogle Scholar
  5. 5.
    Bochkarev, L.N., Begantsova, Yu.E., Il’ichev, V.A., and Abakumov, G.A., Russ. Chem. Bull., 2014, vol. 63, no. 11, p. 2534. doi 10.1007/s11172-014-07CrossRefGoogle Scholar
  6. 6.
    Kimyonok, A., Domercq, B., Haldi, A., Cho, J.-Y., Carlise, J.R., Wang, X.-Y., Hayden, L.E., Jones, S.C., Barlow, S., Marder, S.R., Kippelen, B., and Weck, M., Chem. Mater., 2007, vol. 19, p. 5602. doi 10.1021/cm0717357CrossRefGoogle Scholar
  7. 7.
    Lai, W.-Y., Balfour, M.N., Levell, J.W., Bansal, A.K., Burn, P.L., Lo, S.-C., and Samuel, I.D.W., Macromolecules, 2012, vol. 45, p. 2963. doi 10.1021/ma300306dCrossRefGoogle Scholar
  8. 8.
    Bochkarev, L.N., Begantsova, Yu.E., Platonova, E.O., Basova, G.V., Rozhkov, A.V., Il’ichev, V.A., Baranov, E.V., Abakumov, G.A., and Bochkarev, M.N., Russ. Chem. Bull., 2014, vol. 63, no. 4, p. 1001. doi 10.1007/s11172-014-05CrossRefGoogle Scholar
  9. 9.
    Platonova, E.O., Il’ichev, V.A., Baranov, E.V., and Bochkarev, L.N., Russ. J. Coord. Chem., 2016, vol. 42, no. 3, p. 187. doi 10.1134/S1070328416030076CrossRefGoogle Scholar
  10. 10.
    Rao, N.V., Ganivada, M.N., Sarkar, S., Dinda, H., Chatterjee, K., Dalui, T., Das Sarma, J., and Shunmugam, R., Bioconjugate Chem., 2014, vol. 25, p. 276. doi 10.1021/bc400409nCrossRefGoogle Scholar
  11. 11.
    Shao, Y., Jia, Y.-G., Shi, C., Luo, J., and Zhu, X.X., Biomacromolecules, 2014, vol. 15, p. 1837. doi 10.1021/bm5002262CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tezgel, A.Ö., Telfer, J.C., and Tew, G.N., Biomacromolecules, 2011, vol. 12, p. 3078. doi 10.1021/bm200694uCrossRefPubMedGoogle Scholar
  13. 13.
    Gueugnon, F., Denis, I., Pouliquen, D., Collette, F., Delatouche, R., Heroguez, V., Gregoire, M., Bertrand, P., and Blanquart, C., Biomacromolecules, 2013, vol. 14, p. 2396. doi 10.1021/bm400516bCrossRefPubMedGoogle Scholar
  14. 14.
    Lo, K.K.-W., Li, S.P.-Y., and Zhang, K.Y., New J. Chem., 2011, vol. 35, p. 265. doi 10.1039/c0nj00478bCrossRefGoogle Scholar
  15. 15.
    Baggaley, E., Weinstein, J.A., and Williams, J.A.G., Coord. Chem. Rev., 2012, vol. 256, p. 1762. doi 10.1016/j.ccr.2012.03.018CrossRefGoogle Scholar
  16. 16.
    Hersey, J.S., Meller, A., and Grinstaff, M.W., Anal. Chem., 2015, vol. 87, p. 11863. doi 10.1021/acs.analchem.5b03386CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Begantsova, Yu.E., Bochkarev, L.N., Samsonov, M.A., and Fukin, G.K., Russ. J. Coord. Chem., 2013, vol. 39, no. 9, p. 661. doi 10.1134/S1070328413090017CrossRefGoogle Scholar
  18. 18.
    Bochkarev, L.N., Begantsova, Yu.E., Il’ichev, V.A., Baranov, E.V., Abakumov, G.A., Russ. J. Coord. Chem., 2015, vol. 41, no. 9, p. 555. doi 10.1134/S1070328415090018CrossRefGoogle Scholar
  19. 19.
    Montalti, M., Credi, A., Prodi, L., and Gandolfi, M.T., Handbook of Photochemistry, Boca Raton, FL: CRC Press, 2006, 3rd ed.Google Scholar
  20. 20.
    Scholl, M., Ding, S., Lee, C.W., and Grubbs, R.H., Org. Lett., 1999, vol. 1, p. 953. doi 10.1021/ol990909qCrossRefPubMedGoogle Scholar
  21. 21.
    Love, J.A., Morgan, J.P., Trnka, T.M., and Grubbs, R.H., Angew. Chem. Int. Ed., 2002, vol. 41, p. 4035. doi 10.1002/1521-3773(20021104)41:21<4035::AIDANIE4035> 3.0.CO;2-ICrossRefGoogle Scholar
  22. 22.
    Magde, D., Wong, R., and Seybold, P.G., Photochem. Photobiol., 2002, vol. 75, p. 327. doi 10.1562/0031-8655(2002)0750327FQYATR2.0.CO2CrossRefPubMedGoogle Scholar
  23. 23.
    Lуpez Arbeloa, F., Ruiz Ojeda, P., and Lуpez Arbeloa, I., J. Lumin., 1989, vol. 44, p. 105. doi 10.1016/0022-2313 (89)90027-6CrossRefGoogle Scholar
  24. 24.
    Demas, J.N. and Crosby, G.A., J. Phys. Chem., 1971, vol. 75, p. 991. doi 10.1021/j100678a001CrossRefGoogle Scholar
  25. 25.
    Freshney, M.G., Culture of Immortalized Cells, New York: Wiley-Liss, 2010.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. O. Platonova
    • 1
  • A. V. Rozhkov
    • 1
  • S. A. Lermontova
    • 1
  • L. G. Klapshina
    • 1
  • A. N. Konev
    • 1
  • L. N. Bochkarev
    • 1
  • G. A. Abakumov
    • 1
  1. 1.G.A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations