Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 4, pp 713–720 | Cite as

Coupling of Bis(xylylisocyanide) Palladium(II) Complex with 1,2,4-Thiadiazole-5-amines

  • A. S. Mikherdov
  • N. Yu. Tiuftiakov
  • V. A. Polukeev
  • V. P. Boyarskii
Article

Abstract

The coupling of bis(xylylisocyanide) complex of Pd(II) with 1,2,4-thiadiazole-5-amines leads to the formation of an equilibrium mixture of the binuclear complexes. In each of the studied cases, one of the formed complexes is the kinetic product, and the other one is the thermodynamic product. The complexes which are thermodynamic products have been isolated in the pure form and characterized by means of high-resolution mass spectrometry, IR and NMR spectroscopy, and X-ray diffraction analysis. NMR study of the regioisomerization in a solution has revealed that the relative stability of the thermodynamic products in comparison with the kinetic ones is higher than for the corresponding regioisomers containing 1,3-thiazole or 1,3,4- thiadiazole fragment.

Keywords

acyclic diaminocarbene complexes binuclear palladium complexes isocyanide ligands regioisomerizattion 1,2,4-thiadiazole-5-amines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was financially supported by the Russian Foundation for Basic Research (project no. 18-33- 00704-mol-a) and carried out using the equipment of Research Park SPbU (“Magnetic Resonance Research Centre,” “Centre for X-ray Diffraction Studies,” “Chemical Analysis and Materials Research Centre,” and “Chemistry Educational Centre”).

References

  1. 1.
    Vignolle, J., Catton, X., and Bourissou, D., Chem. Rev., 2009, vol. 109, no. 8, p. 3333. doi 10.1021/cr800549jCrossRefPubMedGoogle Scholar
  2. 2.
    Boyarskiy, V.P., Luzyanin, K.V., and Kukushkin, V.Y., Coord. Chem. Rev., 2012, vol. 256, nos. 17–18, p. 2029. doi 10.1016/j.ccr.2012.04.022CrossRefGoogle Scholar
  3. 3.
    Slaughter, L.M., ACS Catal., 2012, vol. 2, no. 8, p. 1802. doi 10.1021/cs300300yCrossRefGoogle Scholar
  4. 4.
    Boyarskiy, V.P., Bokach, N.A., Luzyanin, K.V., and Kukushkin, V.Y., Chem. Rev., 2015, vol. 115, no. 7, p. 2698. doi 10.1021/cr500380dCrossRefPubMedGoogle Scholar
  5. 5.
    Kinzhalov, M.A. and Boyarskii, V.P., Russ. J. Gen. Chem., 2015, vol. 85, no. 10, p. 2313. doi 10.1134/S1070363215100175CrossRefGoogle Scholar
  6. 6.
    Boyarskaya, D.V., Boyarskii, V.P., Russ. J. Gen. Chem., 2016, vol. 86, no. 9, p. 2033. doi 10.1134/S1070363216090085CrossRefGoogle Scholar
  7. 7.
    Boyarskii, V.P., Russ. J. Gen. Chem., 2017, vol. 87, no. 8, p. 1663. doi 10.1134/S1070363217080035CrossRefGoogle Scholar
  8. 8.
    Slaughter, L.M., Comments Inorg. Chem., 2008, vol. 29, nos. 1–2, p. 46. doi 10.1080/02603590802053139CrossRefGoogle Scholar
  9. 9.
    Kinzhalov, M.A., Timofeeva, S.A., Luzyanin, K.V., Boyarskiy, V.P., Yakimanskiy, A.A., Haukka, M., and Kukushkin, V.Yu., Organometallics, 2016, vol. 35, no. 2, p. 218. doi 10.1021/acs.organomet.5b00936CrossRefGoogle Scholar
  10. 10.
    Tskhovrebov, A.G., Luzyanin, K.V., Dolgushin, F.M., Guedes da Silva, M.F.C., Pombeiro, A.J.L., and Kukushkin, V.Y., Organometallics, 2011, vol. 30, no. 12, p. 3362. doi 10.1021/om2002574CrossRefGoogle Scholar
  11. 11.
    Kinzhalov, M.A., Luzyanin, K.V., Boyarskiy, V.P., Haukka, M., and Kukushkin, V.Y., Russ. Chem. Bull., 2013, vol. 62, no. 3, p. 758. doi 10.1007/s11172-013-0103-4CrossRefGoogle Scholar
  12. 12.
    Mikherdov, A.S., Kinzhalov, M.A., Novikov, A.S., Boyarskiy, V.P., Boyarskaya, I.A., Dar’in, D.V., Starova, G.L., and Kukushkin, V.Y., J. Am. Chem. Soc., 2016, vol. 138, no. 42, p. 14129. doi 10.1021/jacs.6b09133CrossRefGoogle Scholar
  13. 13.
    Chay, R.S., Luzyanin, K.V., Kukushkin, V.Y., Guedes da Silva, M.F.C., and Pombeiro, A.J.L., Organometallics, 2012, vol. 31, no. 6, p. 2379. doi 10.1021/om300020jCrossRefGoogle Scholar
  14. 14.
    Luzyanin, K.V., Pombeiro, A.J.L., Haukka, M., and Kukushkin, V.Y., Organometallics, 2008, vol. 27, no. 20, p. 5379. doi 10.1021/om800517cCrossRefGoogle Scholar
  15. 15.
    Chay, R.S. and Luzyanin, K.V., Inorg. Chim. Acta, 2012, vol. 380, p. 322. doi 10.1016/j.ica.2011.09.047CrossRefGoogle Scholar
  16. 16.
    Mikherdov, A.S., Novikov, A.S., Kinzhalov, M.A., Boyarskiy, V.P., Starova, G.L., Ivanov, A.Y., and Kukushkin, V.Y., Inorg. Chem., 2018, vol. 57, p. 3420. doi 10.1021/acs.inorgchem.8b00190CrossRefPubMedGoogle Scholar
  17. 17.
    Mikherdov, A.S., Novikov, A.S., Kinzhalov, M.A., Zolotarev, A.A., and Boyarskiy, V.P., Crystals, 2018, vol. 8, no. 3, p. 112. doi 10.3390/cryst8030112CrossRefGoogle Scholar
  18. 18.
    Goerdeler, J. and Linden, P., Chem. Ber., 1956, vol. 89, no. 12, p. 2742. doi 10.1002/cber.19560891211CrossRefGoogle Scholar
  19. 19.
    Bauer, L. and Khullar, K., J. Org. Chem., 1971, vol. 36, no. 20, p. 3038. doi 10.1021/jo00819a029CrossRefGoogle Scholar
  20. 20.
    Allen, H.F., Kennard, O., Watson, D.G., Brammer, L., Guy Orpen, A., and Taylor, T., J. Chem. Soc. Perkin Trans. 2, 1987, no. 12, p. S1. doi 10.1039/P298700000S1CrossRefGoogle Scholar
  21. 21.
    Bondi, A., J. Phys. Chem., 1964, vol. 68, no. 3, p. 441. doi 10.1021/j100785a001CrossRefGoogle Scholar
  22. 22.
    Pascoe, D.J., Ling, K.B., and Cockroft, S.L., J. Am. Chem. Soc., 2017, vol. 139, no. 42, p. 15160. doi 10.1021/jacs.7b08511CrossRefPubMedGoogle Scholar
  23. 23.
    Mahmudov, K.T., Kopylovich, M.N., Guedes da Silva, M.F.C., and Pombeiro, A.J.L., Dalton Trans., 2017, vol. 46, no. 31, p. 10121. doi 10.1039/c7dt01685aCrossRefPubMedGoogle Scholar
  24. 24.
    Zhao, H. and Gabbaï, F.P., Nat. Chem., 2010, vol. 2, p. 984. doi 10.1038/nchem.838CrossRefPubMedGoogle Scholar
  25. 25.
    Bleiholder, C., Werz, D.B., Koppel, H., and Gleiter, R., J. Am. Chem. Soc., 2006, vol. 128, no. 8, p. 2666. doi 10.1021/ja056827gCrossRefPubMedGoogle Scholar
  26. 26.
    Bauza, A., Mooibroek, T.J., and Frontera, A., ChemPhysChem., 2015, vol. 16, no. 12, p. 2496. doi 10.1002/cphc.201500314CrossRefPubMedGoogle Scholar
  27. 27.
    Kinzhalov, M.A., Luzyanin, K.V., Boyarskaya, I.A., Starova, G.L., and Boyarskiy, V.P., J. Mol. Struct., 2014, vol. 1068, p. 222. doi 10.1016/j.molstruc.2014.04.025CrossRefGoogle Scholar
  28. 28.
    Kinzhalov, M.A., Zolotarev, A.A., and Boyarskiy, V.P., J. Struct. Chem., 2016, vol. 57, no. 2, p. 822. doi 10.1134/S0022476616040302CrossRefGoogle Scholar
  29. 29.
    Sheldrick, G.M., Acta Crystallogr., 2008, vol. 64, no. 1, p. 112. doi 10.1107/S0108767307043930CrossRefGoogle Scholar
  30. 30.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H., J. Appl. Crystallogr., 2009, vol. 42, no. 2, p. 339. doi 10.1107/S0021889808042726CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Mikherdov
    • 1
  • N. Yu. Tiuftiakov
    • 1
  • V. A. Polukeev
    • 2
  • V. P. Boyarskii
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Experimental MedicineSt. PetersburgRussia

Personalised recommendations