Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 537–540 | Cite as

Facile One Pot Multi-Component Solvent-Free Synthesis of 2,4,5-Trisubstituted Imidazoles Using “Green” and Expeditious Ionic Liquid Catalyst under Microwave Irradiation

  • B. Sonyanaik
  • K. Ashok
  • S. Rambabu
  • D. Ravi
  • A. Kurumanna
  • P. Madhu
  • B. Sakram
Article

Abstract

Acetic acid functionalized poly(4-vinylpyridinium) bromide is a highly efficient and recyclable catalyst for the construction of 2,4,5-trisubstituted imidazole derivatives by a three-component condensation of benzyl with various aldehydes and ammonium acetate under solvent free conditions. The microwave initiated process leads to analytically pure compounds within 2–5 min. The advantages of this “green” methodology are cost-effectiveness, simple procedure, low energy consumption, no involvement of organic solvents, safe operation, clean reaction profile, high yields, and recyclability of the catalyst.

Keywords

one pot synthesis solvent-free conditions microwave irradiation 2,4,5-trisubstituted imidazoles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balalaie, S., Hashemi, M.M., Akhbari, M., Tetrahedron Lett., 2003, vol. 44, p. 1709. doi 10.1016/s0040-4039 (03)00018-2CrossRefGoogle Scholar
  2. 2.
    Gadekar, L.S., Mane, S.R., Katkar, S.S., Arbad, R.B., and Lande, M.K., Cent. Eur. J. Chem., 2009, vol. 7, p. 550. doi 10.2478/s11532-009-0050-yGoogle Scholar
  3. 3.
    Vijesh, A.M., Isloor, A.M., Telkar, S., Arulmoli, T., and Hoong-Kun, F., Arabian. J. Chem., 2013, vol. 6, p. 197. doi 10.1016/j.arabjc.2011.10.007CrossRefGoogle Scholar
  4. 4.
    Liu, C., Chen, Q., and Schneller, S.W., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 5182. doi 10.1016/j.bmcl.2012.06.075CrossRefGoogle Scholar
  5. 5.
    Liu, T., Sun, C., Xing, X., Jing, L., and Tan, R., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 3122. doi 10.1016/j.bmcl.2012.03.061CrossRefGoogle Scholar
  6. 6.
    Takle, A.K., Brown, M.J., Davies, S., Dean, D.K., Francis, G., Gaiba, A., Hird, A.W., King, F.D., Lovell, P.J., Naylor, A., Reith, A.D., Steadman, J.G., and Wilson, D.M., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 378. doi 10.1016/j.bmcl.2005.09.072CrossRefGoogle Scholar
  7. 7.
    Ücucu, U., Karaburun, N.G., and Işkdag, I., II Farmaco, 2001, vol. 56, p. 285. doi 10.1016/S0014-827X(01) 01076-XCrossRefGoogle Scholar
  8. 8.
    Brzozowski, Z., Saczewski, F., and Neamati, N., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 5298. doi 10.1016/j.bmcl.2006.07.089CrossRefGoogle Scholar
  9. 9.
    Kuma, J.R., Pharmacophore, 2010, vol. 1, p. 167.Google Scholar
  10. 10.
    Wang, L.M., Wang, Y.H., Tian, H., Yao, Y.M., Shao, J.H., and Liu, B., J. Fluor. Chem., 2006, vol. 127, p. 1570. doi 10.1016/j.jfluchem.2006.08.005CrossRefGoogle Scholar
  11. 11.
    Sharma, G.V.M., Jyothi, Y., and Lakshmi, P.S., Synth. Commun., 2006, vol. 36, p. 2991. doi 10.1080/00397910600773825CrossRefGoogle Scholar
  12. 12.
    Sangshetti, J.N., Kakare, N.D., Kotharkar, S.A., and Shinde, D.B., J. Chem. Sci., 2008, vol. 120, p. 463. doi 10.1007/s12039-008-0072-6CrossRefGoogle Scholar
  13. 13.
    Sakram, Rambabu, S.B., Ashok, K., Sonyanaik, B., and Rvai, D., Russ. J. Gen. Chem., 2016, vol. 86, no. 12, p. 2737. doi 10.1134/S1070363216120343CrossRefGoogle Scholar
  14. 14.
    Moosavi-Zarea, A.R., Zolfigolb, M.A., Noroozizadehb, E., Zareib, M., Karamianc, R., and Asadbegyc, M., J. Mol. Catal. A, 2016, vol. 425, p. 217. doi 10.1016/j.molcata.2016.10.011CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. Sonyanaik
    • 1
  • K. Ashok
    • 1
  • S. Rambabu
    • 1
  • D. Ravi
    • 1
  • A. Kurumanna
    • 1
  • P. Madhu
    • 1
  • B. Sakram
    • 1
  1. 1.Department of ChemistryOsmania UniversityTelanganaIndia

Personalised recommendations