Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 452–461 | Cite as

Synthesis of Pentaerythritol-Based Branching Reagents for Modification of Proteins and Nucleic Acids by [2+3] Dipolar Cycloaddition Reaction

  • Yu. V. Martynenko-Makaev
  • V. V. Udodova
  • O. L. Sharko
  • V. V. Shmanai
Article

Abstract

Alkylation of pentaerythritol symmetrically substituted with propylene glycol with propargyl bromide afforded compounds containing two or three alkyne moieties. Amidophosphite reagents and solid supports were prepared for the introduction of two and three acetylene fragments into oligonucleotides at the 3'- and 5'-positions and inside the chain under conditions of automated solid-phase oligonucleotide synthesis. Based on the trialkynyl derivative, an N-hydroxysuccinimide ester was obtained which can be used to modify biomolecules attacking the amino group. Conjugates obtained can be used for multiple modifications by [3+2] dipolar cycloaddition reaction.

Keywords

pentaerythritol linkers cycloaddition click-reaction biomolecules modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrae-Marobela, K., Ghislain, F.W., Okatch, H., and Majinda, R.R., Curr. Drug. Metab., 2013, vol. 14, p. 392. doi 10.2174/13892002113149990095CrossRefGoogle Scholar
  2. 2.
    Bell, N.M. and Micklefield, J., ChemBioChem, 2009, vol. 10, p. 2691. doi 10.1002/cbic.200900341CrossRefGoogle Scholar
  3. 3.
    Juillerat-Jeanneret, L. and Schmitt, F., Med. Res. Rev., 2007, vol. 27, p. 574. doi 10.1002/med.20086CrossRefGoogle Scholar
  4. 4.
    Lasala, F., Arce, E., Otero, J.R., Rojo, J., and Delgado, R., Antimicrob. Agents Chemother., 2003, vol. 47, p. 3970. doi 10.1128/AAC.47.12.3970-3972.2003CrossRefGoogle Scholar
  5. 5.
    Krall, N., da Cruz, F.P., Boutureira, O., and Bernardes, G., Nature Chem., 2016, vol. 8, p. 103. doi 10.1038/nchem.2393CrossRefGoogle Scholar
  6. 6.
    McCarthy, T.D., Karellas, P., Henderson, S.A., Giannis, M., O’Keefe, D.F., Heery, G., Paull, J.R., Matthews, B.R., and Holan, G., Mol. Pharm., 2005, vol. 2, p. 312. doi 10.1021/mp050023qCrossRefGoogle Scholar
  7. 7.
    Qu, B., Li, X., Guan, M., Hai, L., and Wu, Y., Eur. J. Med. Chem., 2014, vol. 72, p. 110. doi 10.1016/j.ejmech.2013.10.007CrossRefGoogle Scholar
  8. 8.
    Touaibia, M., Shiao, T.C., Papadopoulos, A., Vaucher, J., Wang, Q., Benhamioud, K., and Roy, R., Chem. Commun., 2007, vol. 4, p. 380. doi 10.1039/b612471bCrossRefGoogle Scholar
  9. 9.
    Ryazantsev, D.Y., Kvach, M.V., Tsybulsky, D.A., Prokhorenko, I.A., Stepanova, I.A., Martynenko, Y.V., Gontarev, S.V., Shmanai, V.V., Zavriev, S.K., and Korshun, V.A., Analyst, 2014, vol. 139, p. 2867. doi 10.1039/c4an00081aCrossRefGoogle Scholar
  10. 10.
    Grow, A.E., Wood, L.L., Claycomb, J.L., and Thompson, P.A., J. Microbiol. Methods, 2003, vol. 53, p. 221. doi 10.1016/S0167-7012(03)00026-5CrossRefGoogle Scholar
  11. 11.
    Southern, M., Technical Focus, 1996, vol. 12, p. 110. doi 10.1016/0168-9525(96)81422-3Google Scholar
  12. 12.
    Moni, L., Pourceau, G., Zhanq, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J.J., and Marra, A., ChemBioChem, 2009, vol. 10, p. 1369. doi 10.1002/cbic. 200900024CrossRefGoogle Scholar
  13. 13.
    Kendziora, D.M., Ahmed, I., and Fruk, L., RSC Adv., 2014, vol. 4, p. 17980. doi 10.1039/C4RA01773KCrossRefGoogle Scholar
  14. 14.
    Rouge, J.L., Eaton, B.E., and Feldheim, D.L., Energy Environ. Sci., 2011, vol. 4, p. 398. doi 10.1039/C0EE00400FCrossRefGoogle Scholar
  15. 15.
    Sharma, S.K., Sehgal, N., and Kumar, A., Curr. Appl. Phys., 2003, vol. 3, p. 307. doi 10.1016/S1567-1739(02) 00219-5CrossRefGoogle Scholar
  16. 16.
    Scheffler, M., Dorenbeck, A., Jordan, S., Wustefeld, M., and von Kiedrowski, G., Angew. Chem. Int. Ed., 1999, vol. 38, p. 3312. doi 10.1002/(SICI)1521-3773 (19991115)38:22<3311::AID-ANIE3311>3.0.CO;2-2CrossRefGoogle Scholar
  17. 17.
    Guzaev, A., Salo, H., Azhayev, A., and Lönnberg, H., Bioconjug. Chem., 1996, vol. 7, p. 240. doi 10.1021/bc9600067CrossRefGoogle Scholar
  18. 18.
    Kuan, S.L., Wang, T., and Weil, T., Chemistry, 2016, vol. 22, p. 17112. doi 10.1002/chem.201602298CrossRefGoogle Scholar
  19. 19.
    Hermanson, G.T., Bioconjugate Techniques, London: Academic Press, 1996.Google Scholar
  20. 20.
    Gallo, M., Montserrat, J.M., and Iribarren, A.M., Braz. J. Med. Biol. Res., 2003, vol. 36, p. 143. doi 10.1590/S0100-879X2003000200001CrossRefGoogle Scholar
  21. 21.
    Gait, M.J., Oligonucleotide Synthesis: A practical Approach, Oxford: Oxford University Press, 1984.Google Scholar
  22. 22.
    Liang, L. and Astruc, D., Coord. Chem. Rev., 2011, vol. 255, p. 2933. doi 10.1016/j.ccr.2011.06.028CrossRefGoogle Scholar
  23. 23.
    Hemaprabha, E., J. Pharm. Sci. Innov., 2012, vol. 1, p. 22. doi 10.7897/2277-4572Google Scholar
  24. 24.
    Flores, A., Camarasa, M.J., Perez-Perez, M.J., San-Felix, A., Balzarini, J., and Quesada, E., Org. Biomol. Chem., 2014, vol. 12, p. 5278. doi 10.1039/C4OB00445KCrossRefGoogle Scholar
  25. 25.
    Al-Mughaid, H. and Grindley, T.B., J. Org. Chem., 2006, vol. 71, p. 1390. doi 10.1021/jo052045uCrossRefGoogle Scholar
  26. 26.
    Lindhorst, T.K., Dubber, M., Krallmann-Wenzel, U., and Ehlers, S., Eur. J. Org. Chem., 2000, vol. 11, p. 2027. doi 10.1002/1099-0690(200006)2000:11<2027::AID-EJOC2027>3.0.CO;2-LCrossRefGoogle Scholar
  27. 27.
    Ryazantsev, D.Y., Tsybulsky, D.A., Prokhorenko, I.A., Kvach, M.V., Martynenko, Y.V., Philipchenko, P.M., Shmanai, V.V., Korshun, V.A., and Zavriev, S.K., Anal. Bioanal. Chem., 2012, vol. 404, p. 59. doi 10.1007/s00216-012-6114-4CrossRefGoogle Scholar
  28. 28.
    Mollard, A. and Zharov, I., Inorg. Chem., 2006, vol. 45, p. 10172. doi 10.1021/ic061297qCrossRefGoogle Scholar
  29. 29.
    Zhu, J., Zhu, X., Kang, E.T., and Neoh, K.G., Polymer, 2007, vol. 48, p. 6992. doi 10.1016/j.polymer.2007.10.004CrossRefGoogle Scholar
  30. 30.
    Shchepinov, M.S., Udalova, I.A., Bridgman, A.J., and Southern, E.M., Nucl. Acids Res., 1997, vol. 25, p. 4447. doi 10.1093/nar/25.22.4447CrossRefGoogle Scholar
  31. 31.
    Avino, A., Ocampo, S.M., Perales, J.C., and Eritja, R., J. Nucl. Acids, 2011, p. 1. doi 10.4061/2011/586935Google Scholar
  32. 32.
    Ponomarenko, A.I., Brylev, V.A., Sapozhnikova, K.A., Ustinov, A.V., Prokhorenko, I.A., Zatsepin, T.S., and Korshun, V.A., Tetrahedron, 2016, vol. 12, p. 2386. doi 10.1016/j.tet.2016.03.051CrossRefGoogle Scholar
  33. 33.
    Damha, J.M., Giannaris, P.A., and Zabarylo, S.V., Nucl. Acids Res., 1990, vol. 18, p. 3813. doi 10.1093/nar/18.13.3813CrossRefGoogle Scholar
  34. 34.
    Deshmukh, R.R., Cole, D.L., and Sanghvi, Y.S., Methods in Enzymology, 2000, vol. 313, p. 203. doi 10.1016/S0076-6879(00)13014-9CrossRefGoogle Scholar
  35. 35.
    Schulte, M., Luhring, N., Keil, A., and Sanghvi, Y.S., Org. Proc. Res. Dev., 2005, vol. 9, p. 212. doi 10.1021/op050006eCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Martynenko-Makaev
    • 1
  • V. V. Udodova
    • 1
  • O. L. Sharko
    • 1
  • V. V. Shmanai
    • 1
  1. 1.Institute of Physical Organic Chemistry of the National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations