Synthesis of Pentaerythritol-Based Branching Reagents for Modification of Proteins and Nucleic Acids by [2+3] Dipolar Cycloaddition Reaction
Article
First Online:
Received:
Abstract
Alkylation of pentaerythritol symmetrically substituted with propylene glycol with propargyl bromide afforded compounds containing two or three alkyne moieties. Amidophosphite reagents and solid supports were prepared for the introduction of two and three acetylene fragments into oligonucleotides at the 3'- and 5'-positions and inside the chain under conditions of automated solid-phase oligonucleotide synthesis. Based on the trialkynyl derivative, an N-hydroxysuccinimide ester was obtained which can be used to modify biomolecules attacking the amino group. Conjugates obtained can be used for multiple modifications by [3+2] dipolar cycloaddition reaction.
Keywords
pentaerythritol linkers cycloaddition click-reaction biomolecules modificationPreview
Unable to display preview. Download preview PDF.
References
- 1.Andrae-Marobela, K., Ghislain, F.W., Okatch, H., and Majinda, R.R., Curr. Drug. Metab., 2013, vol. 14, p. 392. doi 10.2174/13892002113149990095CrossRefGoogle Scholar
- 2.Bell, N.M. and Micklefield, J., ChemBioChem, 2009, vol. 10, p. 2691. doi 10.1002/cbic.200900341CrossRefGoogle Scholar
- 3.Juillerat-Jeanneret, L. and Schmitt, F., Med. Res. Rev., 2007, vol. 27, p. 574. doi 10.1002/med.20086CrossRefGoogle Scholar
- 4.Lasala, F., Arce, E., Otero, J.R., Rojo, J., and Delgado, R., Antimicrob. Agents Chemother., 2003, vol. 47, p. 3970. doi 10.1128/AAC.47.12.3970-3972.2003CrossRefGoogle Scholar
- 5.Krall, N., da Cruz, F.P., Boutureira, O., and Bernardes, G., Nature Chem., 2016, vol. 8, p. 103. doi 10.1038/nchem.2393CrossRefGoogle Scholar
- 6.McCarthy, T.D., Karellas, P., Henderson, S.A., Giannis, M., O’Keefe, D.F., Heery, G., Paull, J.R., Matthews, B.R., and Holan, G., Mol. Pharm., 2005, vol. 2, p. 312. doi 10.1021/mp050023qCrossRefGoogle Scholar
- 7.Qu, B., Li, X., Guan, M., Hai, L., and Wu, Y., Eur. J. Med. Chem., 2014, vol. 72, p. 110. doi 10.1016/j.ejmech.2013.10.007CrossRefGoogle Scholar
- 8.Touaibia, M., Shiao, T.C., Papadopoulos, A., Vaucher, J., Wang, Q., Benhamioud, K., and Roy, R., Chem. Commun., 2007, vol. 4, p. 380. doi 10.1039/b612471bCrossRefGoogle Scholar
- 9.Ryazantsev, D.Y., Kvach, M.V., Tsybulsky, D.A., Prokhorenko, I.A., Stepanova, I.A., Martynenko, Y.V., Gontarev, S.V., Shmanai, V.V., Zavriev, S.K., and Korshun, V.A., Analyst, 2014, vol. 139, p. 2867. doi 10.1039/c4an00081aCrossRefGoogle Scholar
- 10.Grow, A.E., Wood, L.L., Claycomb, J.L., and Thompson, P.A., J. Microbiol. Methods, 2003, vol. 53, p. 221. doi 10.1016/S0167-7012(03)00026-5CrossRefGoogle Scholar
- 11.Southern, M., Technical Focus, 1996, vol. 12, p. 110. doi 10.1016/0168-9525(96)81422-3Google Scholar
- 12.Moni, L., Pourceau, G., Zhanq, J., Meyer, A., Vidal, S., Souteyrand, E., Dondoni, A., Morvan, F., Chevolot, Y., Vasseur, J.J., and Marra, A., ChemBioChem, 2009, vol. 10, p. 1369. doi 10.1002/cbic. 200900024CrossRefGoogle Scholar
- 13.Kendziora, D.M., Ahmed, I., and Fruk, L., RSC Adv., 2014, vol. 4, p. 17980. doi 10.1039/C4RA01773KCrossRefGoogle Scholar
- 14.Rouge, J.L., Eaton, B.E., and Feldheim, D.L., Energy Environ. Sci., 2011, vol. 4, p. 398. doi 10.1039/C0EE00400FCrossRefGoogle Scholar
- 15.Sharma, S.K., Sehgal, N., and Kumar, A., Curr. Appl. Phys., 2003, vol. 3, p. 307. doi 10.1016/S1567-1739(02) 00219-5CrossRefGoogle Scholar
- 16.Scheffler, M., Dorenbeck, A., Jordan, S., Wustefeld, M., and von Kiedrowski, G., Angew. Chem. Int. Ed., 1999, vol. 38, p. 3312. doi 10.1002/(SICI)1521-3773 (19991115)38:22<3311::AID-ANIE3311>3.0.CO;2-2CrossRefGoogle Scholar
- 17.Guzaev, A., Salo, H., Azhayev, A., and Lönnberg, H., Bioconjug. Chem., 1996, vol. 7, p. 240. doi 10.1021/bc9600067CrossRefGoogle Scholar
- 18.Kuan, S.L., Wang, T., and Weil, T., Chemistry, 2016, vol. 22, p. 17112. doi 10.1002/chem.201602298CrossRefGoogle Scholar
- 19.Hermanson, G.T., Bioconjugate Techniques, London: Academic Press, 1996.Google Scholar
- 20.Gallo, M., Montserrat, J.M., and Iribarren, A.M., Braz. J. Med. Biol. Res., 2003, vol. 36, p. 143. doi 10.1590/S0100-879X2003000200001CrossRefGoogle Scholar
- 21.Gait, M.J., Oligonucleotide Synthesis: A practical Approach, Oxford: Oxford University Press, 1984.Google Scholar
- 22.Liang, L. and Astruc, D., Coord. Chem. Rev., 2011, vol. 255, p. 2933. doi 10.1016/j.ccr.2011.06.028CrossRefGoogle Scholar
- 23.Hemaprabha, E., J. Pharm. Sci. Innov., 2012, vol. 1, p. 22. doi 10.7897/2277-4572Google Scholar
- 24.Flores, A., Camarasa, M.J., Perez-Perez, M.J., San-Felix, A., Balzarini, J., and Quesada, E., Org. Biomol. Chem., 2014, vol. 12, p. 5278. doi 10.1039/C4OB00445KCrossRefGoogle Scholar
- 25.Al-Mughaid, H. and Grindley, T.B., J. Org. Chem., 2006, vol. 71, p. 1390. doi 10.1021/jo052045uCrossRefGoogle Scholar
- 26.Lindhorst, T.K., Dubber, M., Krallmann-Wenzel, U., and Ehlers, S., Eur. J. Org. Chem., 2000, vol. 11, p. 2027. doi 10.1002/1099-0690(200006)2000:11<2027::AID-EJOC2027>3.0.CO;2-LCrossRefGoogle Scholar
- 27.Ryazantsev, D.Y., Tsybulsky, D.A., Prokhorenko, I.A., Kvach, M.V., Martynenko, Y.V., Philipchenko, P.M., Shmanai, V.V., Korshun, V.A., and Zavriev, S.K., Anal. Bioanal. Chem., 2012, vol. 404, p. 59. doi 10.1007/s00216-012-6114-4CrossRefGoogle Scholar
- 28.Mollard, A. and Zharov, I., Inorg. Chem., 2006, vol. 45, p. 10172. doi 10.1021/ic061297qCrossRefGoogle Scholar
- 29.Zhu, J., Zhu, X., Kang, E.T., and Neoh, K.G., Polymer, 2007, vol. 48, p. 6992. doi 10.1016/j.polymer.2007.10.004CrossRefGoogle Scholar
- 30.Shchepinov, M.S., Udalova, I.A., Bridgman, A.J., and Southern, E.M., Nucl. Acids Res., 1997, vol. 25, p. 4447. doi 10.1093/nar/25.22.4447CrossRefGoogle Scholar
- 31.Avino, A., Ocampo, S.M., Perales, J.C., and Eritja, R., J. Nucl. Acids, 2011, p. 1. doi 10.4061/2011/586935Google Scholar
- 32.Ponomarenko, A.I., Brylev, V.A., Sapozhnikova, K.A., Ustinov, A.V., Prokhorenko, I.A., Zatsepin, T.S., and Korshun, V.A., Tetrahedron, 2016, vol. 12, p. 2386. doi 10.1016/j.tet.2016.03.051CrossRefGoogle Scholar
- 33.Damha, J.M., Giannaris, P.A., and Zabarylo, S.V., Nucl. Acids Res., 1990, vol. 18, p. 3813. doi 10.1093/nar/18.13.3813CrossRefGoogle Scholar
- 34.Deshmukh, R.R., Cole, D.L., and Sanghvi, Y.S., Methods in Enzymology, 2000, vol. 313, p. 203. doi 10.1016/S0076-6879(00)13014-9CrossRefGoogle Scholar
- 35.Schulte, M., Luhring, N., Keil, A., and Sanghvi, Y.S., Org. Proc. Res. Dev., 2005, vol. 9, p. 212. doi 10.1021/op050006eCrossRefGoogle Scholar
Copyright information
© Pleiades Publishing, Ltd. 2018