Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 3, pp 430–438 | Cite as

Features of Reaction of 2-(5-Methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-4H-benzo[e]-1,3,2-dioxaphosphorin-4-one with 1,2-Dicarbonyl Compounds

  • V. F. Mironov
  • G. A. Ivkova
  • L. M. Abdrakhmanova
  • E. V. Mironova
  • R. Z. Musin
  • V. K. Cherkasov
Article

Abstract

2-(5-Methyl-2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-4H-benzo[e]-1,3,2-dioxaphosphorin-4-one reacts with perfluorodiacetyl, 3,6-di(tert-butyl)-1,2-benzoquinone and phenanthrenequinone only with the participation of a three-coordinated phosphorus atom to form spirophosphoranes containing acyclic 5-methyl-2- phenyl-2H-1,2,3-diazaphosphol-4-yl substituent, whereas the interaction with tetrachloro-1,2-benzoquinone proceeds via expanding the six-membered heterocycle to the nine-membered one to form 2-(2-phenyl-2H-1,2,3-diazaphosphol-4-yl)-2,9-dioxo-4,5,6,7-tetrachlorodibenzo[d,h]-1,3,8-trioxaphosphonine.

Keywords

diazaphosphol tetrachloro-1,2-benzoquinone phenanthrenequinone perfluorodiacetyl phosphorane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kukhtin, V.A., Doklady Akad. Nauk SSSR. (Dokl. Chem.), 1958, vol. 121, no. 3, p. 466.Google Scholar
  2. 2.
    Kukhtin, V.A. and Pudovik, A.N., Uspekhi Khim., 1959, vol. 28, no. 1, p. 96.Google Scholar
  3. 3.
    Kukhtin, V.A. and Orekhova, K.M., Zh. Obshch. Khim., 1960, vol. 30, no. 4, p. 1208.Google Scholar
  4. 4.
    Ramirez, F., Bhatia, S.B., Mitra, R.B., Hamlet, Z., and Desai, N.B., J. Am. Chem. Soc., 1964, vol. 86, no. 20, p. 4394. doi 10.1021/ja01074a034CrossRefGoogle Scholar
  5. 5.
    Harris, M.E., Piccirilli, J.A., and York, D.M., Biochim. Biophys. Acta, 2015, vol. 1854, p. 1801. doi 10.1016/j.bbapap.2015.04.022CrossRefGoogle Scholar
  6. 6.
    Levina, E.Ya. and Kibardin, A.M., Russ. Chem. Rev., 1999, vol. 68, no. 2, p. 149. doi 10.1070/RC1999v068n02ABEH000403CrossRefGoogle Scholar
  7. 7.
    Osman, F.H. and El-Samahy, F.A., Chem. Rev., 2002, vol. 102, no. 3, p. 629. doi 10.1021/cr0000325CrossRefGoogle Scholar
  8. 8.
    Krasowska, D., Chrzanowski, J., Kiełbasiński, P., and Drabowicz, J., Molecules, 2016, vol. 21, no. 11, p. 1573. doi 10.3390/molecules21111573CrossRefGoogle Scholar
  9. 9.
    Ramirez, F., Patwardhan, A.V., and Smith, C.P., J. Org. Chem., 1966, vol. 31, no. 10, p. 3159. doi 10.1021/jo01348a017CrossRefGoogle Scholar
  10. 10.
    McClure, C.K. and Jung, K.Y., J. Org. Chem., 1991, vol. 56, no. 2, p. 867. doi 10.1021/jo00002a072CrossRefGoogle Scholar
  11. 11.
    Abdou, W.M., Salem, M.A., and Sediek, A.A., Arkivoc, 2005, pt. XIV, p. 102. doi 10.3998/ark.5550190.0006.e13Google Scholar
  12. 12.
    Wang, S.R. and Radosevich, A.T., Org. Lett., 2013, vol. 15, no. 8, p. 1926. doi 10.1021/ol400576eCrossRefGoogle Scholar
  13. 13.
    Zhao, W., Fink, D.M., Labutta, C.A., and Radosevich, A.T., Org. Lett., 2013, vol. 15, no. 12, p. 3090. doi 10.1021/ol401276bCrossRefGoogle Scholar
  14. 14.
    Wang, S.R. and Radosevich, A.T., Org. Lett., 2015, vol. 17, no. 15, p. 3810. doi 10.1021/acs.orglett.5b01784CrossRefGoogle Scholar
  15. 15.
    Haugen, K.C., Rodriguez, K.X., Chavannavar, A.P., Oliver, A.G., and Ashfeld, B.L., Tetrahedron Lett., 2015, vol. 56, no. 23, p. 3527. doi 10.1016/j.tetlet.2015.01.030CrossRefGoogle Scholar
  16. 16.
    Wilson, E.E., Rodriguez, K.X., and Ashfeld, B.L., Tetrahedron, 2015, vol. 71, no. 35, p. 5765. doi 10.1016/j.tet.2015.06.004CrossRefGoogle Scholar
  17. 17.
    Zhou, R., Zhang, K., Han, L., Chen, Y., Li, R., and He, Z., Chem. Eur. J., 2016, vol. 22, no. 17, p. 5883. doi 10.1002/chem.201505047CrossRefGoogle Scholar
  18. 18.
    Sabet-Sarvestani, H., Eshghi, H., and Izadyar, M., RSC Adv., 2017, vol. 7, no. 3, p. 1701. doi 10.1039/c6ra25769kCrossRefGoogle Scholar
  19. 19.
    Zhou, R., Liu, R., Zhang, K., Han, L., Zhang, H., Gao, W., and Li, R., Chem. Commun., 2017, vol. 53, no. 51, p. 6860. doi 10.1039/c7cc03765aCrossRefGoogle Scholar
  20. 20.
    Jiang, J., Liu, H., Lu, C.-D., and Xu, Y.-J., J. Org. Chem., 2017, vol. 82, no. 1, p. 811. doi 10.1021/acs.joc.6b02669CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Li, H., Zhou, X., and He, Z., J. Org. Chem., 2017, vol. 82, no. 20, p. 10997. doi 10.1021/acs.joc.7b01962CrossRefGoogle Scholar
  22. 22.
    Mironov, V.F., Burnaeva, L.M., Konovalova, I.V., Khlopushina, G.A., Mavleev, R.A., and Chernov, P.P., Russ. J. Gen. Chem., 1993, vol. 63, no. 1, p. 17.Google Scholar
  23. 23.
    Konovalova, I.V., Mironov, V.F., Ivkova, G.A., Zagidullina, E.R., Gubaidullin, A.T., Litvinov, I.A., and Kurykin, M.A., Russ. J. Gen. Chem., 2005, vol. 75, no. 4, p. 549. doi 10.1007/s11176-005-0270-6CrossRefGoogle Scholar
  24. 24.
    Mironov, V.F., Konovalova, I.V., and Zyablikova, T.A., Russ. J. Gen. Chem., 1994, vol. 64, no. 12, p. 1751.Google Scholar
  25. 25.
    Neda, I., Fischer, A., Kaukorat, T., Jones, P.G., and Schmutzler, R., Chem. Ber., 1994, vol. 127, no. 9, p. 1579. doi 10.1002/cber. 19941270905CrossRefGoogle Scholar
  26. 25a.
    Neda, I., Melnicky, C., Vollbrecht, A., Fischer, A., Jones, P.G., Martens-Von Salzen, A., Schmutzler, R., Niemeyer, U., Kutscher, B., and Engel, J., Phosphorus, Sulfur, Silicon, Relat. Elem., 1996, vol. 109, nos. 1–4, p. 629. doi 10.1080/10426509608545232Google Scholar
  27. 26.
    Piquet, V., Baceiredo, A., Dahan, F., and Bertrand, G., Comp. Rend. Acad. Sci. Ser. IIC. Chem., 1998, vol. 1, no. 2, p. 123. doi 10.1016/S1251-8069(97)86271-9Google Scholar
  28. 27.
    Mironov, V.F., Ivkova, G.A., Abdrakhmanova, L.M., Mironova, E.V., Krivolapov, D.B., and Konovalova, I.V., Mendeleev Commun., 2011, vol. 21, no. 5, p. 282. doi 10.1016/j.mencom. 2011.09.018CrossRefGoogle Scholar
  29. 28.
    Mironov, V.F., Ivkova, G.A., Abdrakhmanova, L.M., and Konovalova, I.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 11, p. 2372. doi 10.1134/S1070363211110272CrossRefGoogle Scholar
  30. 29.
    Mironov, V.F., Ivkova, G.A., Abdrakhmanova, L.M., Musin, R.Z., Kharlamov, S.V., and Konovalova, I.V., Russ. J. Org. Chem., 2012, vol. 48, no. 2, p. 306. doi 10.1134/S1070428012020261CrossRefGoogle Scholar
  31. 30.
    Mironov, V., Ivkova, G., Abdrakhmanova, L., Burnaeva, L., and Kuzmina, K., Phosphorus, Sulfur, Silicon, Relat. Elem., 2013, vol. 188, p. 162. doi 10.1080/10426507.2012.743140CrossRefGoogle Scholar
  32. 31.
    Mironov, V.F., Ivkova, G.A., Abdrakhmanova, L.M., Musin, R.Z., Mironova, E.V., Krivolapov, D.B., and Gubaidullin, A.T., Phosphorus, Sulfur, Silicon, Relat. Elem., 2018, vol. 193, no. 1, p. 53. doi 10.1080/10426507.2017.1390459CrossRefGoogle Scholar
  33. 32.
    Zurmuehlen, F., Roesch, W., and Regitz, M., Z. Naturforsch. B, 1985, vol. 40, no. 8, p. 1077.Google Scholar
  34. 33.
    Van der Knaap, T.A. and Bickelhaupt, F., Tetrahedron, 1983, vol. 39, no. 19, p. 3189. doi 10.1016/S0040-4020 (01)91565-0CrossRefGoogle Scholar
  35. 34.
    Mironov, V.F., Burnaeva, L.M., Borisova, Yu.Yu., Gubaidullin, A.T., Litvinov, I.A., Ivkova, G.A., and Konovalova, I.V., Russ. J. Org. Chem., 2011, vol. 47, no. 10, p. 1521. doi 10.1134/S1070428011100125CrossRefGoogle Scholar
  36. 35.
    Farrugia, L.J., J. Appl. Crystallogr., 2012, vol. 45, p. 849. doi 10.1107/S002188981202911CrossRefGoogle Scholar
  37. 36.
    Sheldrick, G.M., Acta Crystallogr. (A), 2015, vol. 71, p. 3. doi 10.1107/S2053273314026370Google Scholar
  38. 37.
    Sheldrick, G.M., Acta Crystallogr. (C), 2015, vol. 71, p. 3. doi 10.1107/S2053229614024218Google Scholar
  39. 38.
    Spek, A.L., Acta Crystallogr. Sect. (D), 2009, vol. 65, p. 148. doi 10.1107/S090744490804362XGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. F. Mironov
    • 1
    • 2
  • G. A. Ivkova
    • 2
  • L. M. Abdrakhmanova
    • 1
  • E. V. Mironova
    • 1
    • 2
  • R. Z. Musin
    • 1
  • V. K. Cherkasov
    • 3
  1. 1.Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of the Russian Academy of SciencesKazan, TatarstanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazan, TatarstanRussia
  3. 3.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations