Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 362–367 | Cite as

Crown Ether–SiO2–TiO2 Composites in the Sorption of Metal Ions from Acidic Aqueous Solutions

  • O. V. Fedorova
  • A. I. Maksimovskikh
  • O. V. Koryakova
  • G. L. Rusinov
  • A. N. Murashkevich
  • V. N. Rychkov
  • V. N. Charushin
Article
  • 15 Downloads

Abstract

Crown ether–SiO2–TiO2 composites were obtained by adding crown ethers (dibenzo-18-crown-6 or dibenzo-21-crown-7) during the sol–gel synthesis of SiO2–TiO2. The behavior of the composites in the sorption of several alkali, alkaline-earth, and rare-earth metal cations from acidic solutions was investigated. The crown ether–SiO2–TiO2 composites of the crown ethers showed higher efficiency and selectivity in the sorption of barium cations, as well as ytterbium cations in the presence of Sr(II), Ce(III), La(III), and Nd(III) compared to the parent crown ethers. It was established by FTIR spectroscopy that the crown ether molecule immobilized on the oxide surface has a distorted structure, which can explain the change in the selectivity of complex formation in going from crown ethers to their composites.

Keywords

dibenzocrown ethers immobilization crown ether–SiO2–TiO2 composites sorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crown Ethers and Analogs, Patai, S. and Rappoport, Z., Eds., New York: Wiley, 1989, p. 234.Google Scholar
  2. 2.
    Hiraoka, M., Crown Compounds. Their Characteristics and Applications, Amsterdam: Elsevier, 1982, p. 363.Google Scholar
  3. 3.
    King, R. B. and Heckley, P.R., J. Am. Chem. Soc., 1974, vol. 96, no. 10, p. 3118.CrossRefGoogle Scholar
  4. 4.
    Nesterov, S.V., Russ. Chem. Rev., 2000, vol. 69, no. 9, p. 769. doi 10.1070/RC2000v069n09ABEH000586CrossRefGoogle Scholar
  5. 5.
    Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., and Yukhno, E.K., J. Sol–Gel Sci. Technol., 2013, vol. 68, no. 3, p. 509. doi 10.1007/s10971-012-2947-8CrossRefGoogle Scholar
  6. 6.
    Yakshin, V.V., Vilkova, O.M., Pluzhnik-Gladyr, S.M., and Kotlyar, S.A., Macroheterocycles, 2010, vol. 3, nos. 2–3, p. 114. doi 10.6060/mhc2010.2-3.114CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Fedorova
    • 1
    • 2
  • A. I. Maksimovskikh
    • 2
  • O. V. Koryakova
    • 1
  • G. L. Rusinov
    • 1
    • 2
  • A. N. Murashkevich
    • 3
  • V. N. Rychkov
    • 4
  • V. N. Charushin
    • 1
    • 2
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Chemical Technological InstituteYeltsin Ural Federal UniversityYekaterinburgRussia
  3. 3.Belarus State Technological UniversityMinskBelarus
  4. 4.Physical Technological InstituteEltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations