Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 319–324 | Cite as

Hydrogen-Bond Directed Cyanide-Bridged Supramolecular 2D and 1D Bimetallic Coordination Polymers: Synthesis, Crystal Structure, and Magnetic Properties

  • J. Shi
  • W. Lan
  • Q. Liu
  • D. Zhang


By using K2[Ni(CN)4] as a building block and two Mn(III) compounds containing bicompartimental Schiff-base ligands as assembling segments, two new cyanide-bridged Ni–Mn complexes of the formula {[Mn(L1)(H2O)]4[Ni(CN)4]}[ClO4]2·2CH3CN (1) and {[Mn(L2)(H2O)]2[Ni(CN)4]}·CH3CN H2O (2) (L1 = N,N’-1,2-propylene-bis(3-methoxysalicylideneiminate; L2 = N,N’-1,2-propylene-bis(3-ethoxysalicylideneiminate) have been synthesized and characterized by elemental analysis, IR spectroscopy and X-ray analysis. Single Xray diffraction analysis revealed the cationic pentanuclear and neutral trinuclear structures for complexes 1 and 2, respectively, and indicated that the structure of the Schiff-base ligand had obvious influence on the structural types of the target cyanide-bridged complexes. Both cyanide-bridged complexes are self-complementary via coordinated aqua ligand from one complex and the free O4 compartment from the neighboring complex, therefore giving supramolecular two-dimensional network and one-dimensional zig-zag chain structure. Study of magnetic properties revealed weak antiferromagnetic coupling within the Mn2 dimer formed by the intermolecular hydrogen bond.


cyanide-bridged heterometallic hydrogen bond crystal structure magnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rodríguez-Velamazán, J.A., González, M.A., Real, J.A., Castro, M., Muñoz, M.C., Gaspar, A.B., Ohtani, R., Ohba, M., Yoneda, K., Hijikata, Y., Yanai, N., Mizuno, M., Ando, H., and Kitagawa, S., J. Am. Chem. Soc., 2012, vol. 134, no. 11, p. 5083. doi 10.1021/ja206228nCrossRefGoogle Scholar
  2. 2.
    Jeon, I.R., Calancea, S., Panja, A., Piñero Cruz., D.M., Koumousi, E.S., Dechambenoit, P., Coulon, C., Wattiaux, A., Rosa, P., Mathonière, C., and Clérac, R., Chem. Sci., 2013, vol. 4, no. 6, p. 2463. doi 10.1039/C3SC22069ACrossRefGoogle Scholar
  3. 3.
    Liu, C.M., Xiong, R.G., Zhang, D.Q., and Zhu, D.B., J. Am. Chem. Soc., 2010, vol. 132, no. 12, p. 4044. doi 10.1021/ja910310pCrossRefGoogle Scholar
  4. 4.
    Miyasaka, H., Saitoh, A., and Abe, S., Coord. Chem. Rev., 2007, vol. 251, nos. 21–24, p. 2622. doi 10.1016/j.ccr.2007.07.028, and references therein.CrossRefGoogle Scholar
  5. 5.
    Zhang, H.Y., Xue, C.C., Shi, J.W., Liu, H., Dong, Y.H., Zhao, Z.D., Zhang, D.P., and Jiang, J.Z., Crystal Growth & Des., 2016, vol. 16, no. 10, p. 5753. doi 10.1021/acs.cgd.6b00820CrossRefGoogle Scholar
  6. 6.
    Mousavi, M., Béreau, V., Desplanches, C., Duhayonab, C., and Sutter, J.P., Chem. Commun., 2010, vol. 46, no. 40, p. 7519. doi 10.1039/C0CC02498HCrossRefGoogle Scholar
  7. 7.
    Venkatakrishnan, T.S., Sahoo, S., Bréfuel, N., Duhayon, C., Paulsen, C., Barra, A.L., Ramasesha, S., and Sutter, J.P., J. Am. Chem. Soc., 2010, vol. 132, no. 17, p. 6047. doi 10.1021/ja9089389CrossRefGoogle Scholar
  8. 8.
    Miyasaka, H., Matsumoto, N., Okawa, H., Re, N., Gallo, E., and Floriani, C., J. Am. Chem. Soc., 1996, vol. 118, no. 5, p. 981. doi 10.1021/ja952706cCrossRefGoogle Scholar
  9. 9.
    Zhang, D.P., Wang, H.L., Chen, Y.T., Ni, Z.H., Tian, L.J., and Jiang, J.Z., Inorg. Chem., 2009, vol. 48, no. 23, p. 11215. doi 10.1021/ic901530pCrossRefGoogle Scholar
  10. 10.
    Zhang, D.P. and Wang, P., Inorg. Chem. Commun., 2012, vol. 26, no. 12, p. 77. doi 10.1016/j.inoche.2012.09.013CrossRefGoogle Scholar
  11. 11.
    Andruh, M., Chem. Commun., 2011, vol. 47, no. 11, p. 3025. doi 10.1039/C0CC04506CCrossRefGoogle Scholar
  12. 12.
    Hu, K.Q., Jiang, X., Wu, S.Q., Cui, A.L., Liu, C.M., and Kou, H.Z., Inorg. Chem., 2015, vol. 54, no. 4, p. 1206. doi 10.1021/ic502874nCrossRefGoogle Scholar
  13. 13.
    Sheldrick, G.M., SHELX-97, Universität Göttingen, Germany, 1997.Google Scholar
  14. 14.
    Tang, J.K., Coster, J.S., Golobi, A., Kozlevar, B., Robertazzi, A., Vargiu, A.V., Gamez, P., and Reedijk, J., Inorg. Chem., 2009, vol. 48, no. 12, p. 5473. doi 10.1021/ic900507wCrossRefGoogle Scholar
  15. 15.
    Kahn, O., Molecular Magnetism, Weinheim: VCH, 1993.Google Scholar
  16. 16.
    Kennedy, B.J. and Murray, K.S., Inorg. Chem., 1985, vol. 24, no. 10, p. 1552. doi 10.1021/ic00204a029CrossRefGoogle Scholar
  17. 17.
    Nastase, S., Tuna, F., Maxim, C., Muryn, C.A., Avarvari, N., Winpenny, R.E.P., and Andruh, M., Crystal Growth & Des., 2007, vol. 7, no. 9, p. 1825. doi 10.1021/cg070332gCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringShandong University of TechnologyZiboChina
  2. 2.College of Chemical and Environmental EngineeringShandong University of Science and TechnologyQingdaoChina

Personalised recommendations