Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 312–318 | Cite as

Design, Synthesis, and Cytotoxicity of Semisynthetic Betulinic Acid-1,2,4-Oxadiazole Amide Derivatives

  • C. Krishna
  • M. V. Bhargavi
  • G. L. D. Krupadanam
Article
  • 32 Downloads

Abstract

Biological activity of betulinic acid derivatives containing a 1,2,4-oxadiazole ring prompted us to synthesize betulinic acid-1,2,4-oxadiazole amide derivatives 14–25 starting with the amide coupling reaction of betulinic acid 1 and (3-aryl-1,2,4-oxadiazol-5-yl)methanamines 2–13. The products were tested for cytotoxicity on three human cancer cell lines in vitro. All tested compounds demonstrated high activity. The structures of the synthesized compounds were elucidated from IR, NMR and mass spectra.

Keywords

betulinic acid 1,2,4-oxadiazole coupling amide pro drug cytotoxic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, C.M., Chen, H.T., Wu, Z.Y., Jhan, Y.L., Shyu, C.L., and Chou, C.H., Molecules, 2016, vol. 21, p. 139. doi 10.3390/molecules21020139CrossRefGoogle Scholar
  2. 2.
    Tsai, J.C., Peng, W.H., Chiu, T.H., Lai, S.C., and Lee, C.Y., Am. J. Chinese Med., 2011, vol. 39, p. 943. doi 10.1142/S0192415X11009329CrossRefGoogle Scholar
  3. 3.
    Govdi, A.I., Sokolova, N.V., Sorokina, I.V., Baev, D.S., Tolstikova, T.G., Mamatyuk, V.I., and Nenajdenko, V.G., Med. Chem. Comm., 2015, vol. 6, p. 230. doi 10.1039/C4MD00236ACrossRefGoogle Scholar
  4. 4.
    Safe, H.S., Prather, L.P., Brents, K.L., Chadalapaka, G., and Jutooru, I., Curr. Med. Chem. Anticancer Agents, 2012, vol. 12, p. 1211.CrossRefGoogle Scholar
  5. 5.
    Li, J., Goto, M., Yang, X., Morris-Natschke, S.L., Huang, L., Chen, C.H., and Lee, K.H., Bioor. Med. Chem. Lett., 2016, vol. 26, p. 68. doi 10.1016/j.bmcl.2015.11.029CrossRefGoogle Scholar
  6. 6.
    Pisha, E., Chai, H., Lee, I.S., Chagwedera, T.E., Farnsworth, N.R., Cordell, G.A., Beecher, C.W., Fong, H.H., Kinghorn, A.D., Brown, D.M., and Wani, M.C., Nat. Med., 1995, vol. 1, p. 1046.CrossRefGoogle Scholar
  7. 7.
    Eiznhamer, D.A. and Xu, Z.Q., Drugs, 2004, vol. 7, p. 359.Google Scholar
  8. 8.
    Shintyapina, A.B., Shults, E.E., Petrenko, N.I., Uzenkova, N.V., and Tolstikov, G.A., Bioorg. Chem., 2007, vol. 33, p. 579. doi 10.1134/S1068162007060076CrossRefGoogle Scholar
  9. 9.
    Jeong, H.J., Chai, H.B., Park, S.Y., and Kim, D.S.H.L., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 1201.CrossRefGoogle Scholar
  10. 10.
    Kim, J.Y., Koo, H.M., and Kim, D.S.H.L., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 2405. doi 10.1016/2Fj.bmcl.2011.12.102CrossRefGoogle Scholar
  11. 11.
    Kumar, V., Rani, N., Aggarwal, P., Sanna, V.K., Singh, A.T., Jaggi, M., Joshi, N., Sharma, P.K., Irchhaiya, R., and Burman, A.C., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 5058. doi 10.1016/j.bmcl.2008.08.003CrossRefGoogle Scholar
  12. 12.
    Clitherow, J.W., Beswick, P., Irving, W.J., Scopes, D.I.C., Barnes, J.C., Clapham, J., Brown, J.D., Evans, D.J., and Hayes, A.G., Bioorg. Med. Chem. Lett., 1996, vol. 6, p. 833.CrossRefGoogle Scholar
  13. 13.
    Zhang, H.E., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., and Cai, S.X., J. Med. Chem., 2005, vol. 48, p. 5215. doi 10.1016/0960-894X(96)00122-9CrossRefGoogle Scholar
  14. 14.
    Nicolaides, D.N., Fylaktakidou, K.C., and Litinas, K.E., Eur. J. Med. Chem., 1998, vol. 33, p. 715. doi 10.1016/S0223-5234(98)80030-5 pCrossRefGoogle Scholar
  15. 15.
    Chimirri, A., Grasso, S., Montforte, A.M., Rao, A., and Zappala, M., Farmaco, 1996, vol. 51, p. 125.Google Scholar
  16. 16.
    Kumar, D., Patel, G., Johnson, E.O., and Shah, K., Bioorg. Med. Chem. Lett., 2009, vol. 19, p. 2739. doi 10.1016/j.bmcl.2009.03.172CrossRefGoogle Scholar
  17. 17.
    Luthman, K., Borg, S., and Hacksell, U., Methods Mol. Med., 1999, vol. 23, p. 1. doi 10.1385/0-89603-517-4:1Google Scholar
  18. 18.
    Borg, S., Vollinga, R.C., Laborre, M., Payza, K., Terenius, L., and Lut, K., J. Med. Chem., 1999, vol. 42, p. 4331. doi 10.1021/jm990229tCrossRefGoogle Scholar
  19. 19.
    Genet, C., Strehle, A., and Schimdt, C., J. Med. Chem., 2010, vol. 53, p. 178. doi 10.1021/jm900872zCrossRefGoogle Scholar
  20. 20.
    Packiarajan, M., Christine, G., Ferreira, M., Hong, S.P., and White, A.D., Bioorg. Med. Chem. Lett., 2012, vol. 22, p. 5658. doi 10.1016/j.bmcl.2012.06.094CrossRefGoogle Scholar
  21. 21.
    Zhao, Q., Liu, S., and Li, Y., J. Agric. Food Chem., 2009, vol. 57, p. 2849.CrossRefGoogle Scholar
  22. 22.
    Mosmann, T., J. Immunol. Method., 1983, vol. 65, p. 55.CrossRefGoogle Scholar
  23. 23.
    Rahbari, R., Sheahan, T., Modes, V., and Badge, R.M., Biotech., 2009, vol. 46, p. 277. doi 10.2144/000113089CrossRefGoogle Scholar
  24. 24.
    Scherer, W.F., Syverton, J.T., and Gey, G.O., J. Exp. Med., 1953, vol. 97, p. 695.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • C. Krishna
    • 1
  • M. V. Bhargavi
    • 2
  • G. L. D. Krupadanam
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceOsmania UniversityHyderabadIndia
  2. 2.Department of Pharmacy, Faculty of TechnologyOsmania UniversityHyderabadIndia

Personalised recommendations