Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 305–311 | Cite as

Synthesis and Characterization of Disulfide-Schiff Base Derivatives and in vitro Investigation of Their Antibacterial Activity Against Multidrug-Resistant Acinetobacter baumannii Isolates: A New Study

  • S. Durmus
  • A. Dalmaz
  • E. Calıskan
  • G. Dulger
Article
  • 33 Downloads

Abstract

In this study two different methods without a catalyst and with a CeO2 nano catalyst were used for the synthesis of dimeric disulfide-Schiff bases. The dimeric disulfide-Schiff base derivatives were characterized by FT-IR, NMR, and MS spectra, and elemental analysis. The disulfide-Schiff bases and their derivatives 2–5c were screened for in vitro antibacterial activity against 40 multidrug-resistant strains of Acinetobacter baumannii, and their minimum inhibitory concentrations were determined. Most of products exhibited high antibacterial activity against Acinetobacter baumannii.

Keywords

dimeric disulfide-Schiff bases antibacterial activity Acinetobacter baumannii minimum inhibitory concentration (MIC) nanoceria multidrug-resistant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santra, S., Majee, A., and Hajra, A., Tetrahedron Lett., 2012, vol. 53, no. 15, p. 1974. doi 10.1016/j.tetlet.2012.02.021CrossRefGoogle Scholar
  2. 2.
    Kudrat-E-Zahan, M. and Islam, M.S., Russ. J. Gen. Chem., 2015, vol. 85, no. 4, p. 979. doi 10.1134/S1070363215040350CrossRefGoogle Scholar
  3. 3.
    Martinez-Bulit, P., Garza-Ortíz, A., Mijangos, E., Barrón-Sosa, L., Sánchez-Bartéz, F., Gracia-Mora, I., Flores-Parra, A., Contreras, R., Reedijk, J., and Barba-Behrens, N., J. Inorg. Biochem., 2015, vol. 142, p. 1. doi 10.1016/j.jinorgbio.2014.09.007CrossRefGoogle Scholar
  4. 4.
    Dief, A.M.A, and Mohamed, I.M.A., Beni-Seuf Univ. J. Appl. Sci., 2015, vol. 4, no. 2, p. 119. doi 10.1016/j.bjbas.2015.05.004Google Scholar
  5. 5.
    Aouad, M.R., Messali, M., Rezki, N., Ali, A.A.S., and Lesimple, A., Acta Pharmaceut., 2015, vol. 65, no. 2, p. 117. doi 10.1515/acph-2015-0011CrossRefGoogle Scholar
  6. 6.
    Özdemir, M., Erayman, İ., Gündem, N.S., Baykan, M., and Baysal, B., Ankem Derg., 2009, vol. 23, no. 3, p. 127.Google Scholar
  7. 7.
    Wareham, D.W., Gordon, N.C., and Hornsey, M., J. Antimicrob. Chemother., 2011, vol. 66, no. 5, p. 1047. doi 10.1093/jac/dkr069CrossRefGoogle Scholar
  8. 8.
    Ozbey, S., Temel, A., Ancın, N., Oztas, S.G., and Tuzun, M., Z. Kristallogr.: New Cryst. Struct., 1998, vol. 213, p. 207. doi 10.1524/ncrs.1998.213.14.207Google Scholar
  9. 9.
    Holm, R.H., Everett, G.W., and Chakravorty, A., Prog. Inorg. Chem., 1996, vol. 7, p. 83. doi 10.1002/9780470166086.ch3Google Scholar
  10. 10.
    Percy, G.C. and Thornton, D.A., J. Inorg. Nucl. Chem., 1972, vol. 34, no. 11, p. 3357. doi 10.1016/0022-1902 (72)80230-6CrossRefGoogle Scholar
  11. 11.
    Percy, G.C. and Thornton, D.A., J. Inorg. Nucl. Chem., 1972, vol. 34, no. 11, p. 3369. doi 10.1016/0022-1902 (72)80231-8CrossRefGoogle Scholar
  12. 12.
    Ligtenbarg, A.G.J., Hage, R., Meetsma, A., and Feringa, B.L., J. Chem. Soc., Perkin. Trans., 1999 vol. 2, p. 807. doi 10.1039/A809497GCrossRefGoogle Scholar
  13. 13.
    Bhowon, M.G., Jhaumeer-Laulloo, S., and Dowlut, M., Transit. Met. Chem., 2005, vol. 30, p. 35. doi 10.1007/s11243-004-3669-8CrossRefGoogle Scholar
  14. 14.
    Durmus, S., Atahan, A., and Zengin, M., Spectrochim. Acta A, 2011, vol. 84, p. 1. doi 10.1016/j.saa.2011.07.034CrossRefGoogle Scholar
  15. 15.
    Durmus, S., Dalmaz, A., Ozdincer, M., and Sivrikaya, S., CBU J. of Sci., 2017, vol. 13, p. 25. doi 10.18466/cbujos.282116Google Scholar
  16. 16.
    Durmus, S., Dalmaz, A., Dulger, G., and Bircan Kadıoğlu D., Eurobiotech J., 2017, vol. 1, p. 230. doi 10.24190/ISSN2564-615X/2017/03.06CrossRefGoogle Scholar
  17. 17.
    Yardan, A., Yahsi, A., Kara, H., Karahan, A., Durmus, S., and Kurtaran, R., Inorg. Chim. Acta, 2014, vol. 413, p. 55. doi 10.1016/j.ica.2014.01.006CrossRefGoogle Scholar
  18. 18.
    Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement, M100-S21, CLSI, Wayne PA., 2011.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and ArtsDuzce UniversityKonuralp, DuzceTurkey
  2. 2.Department of Chemistry, Graduate School Natural and Applied SciencesDuzce UniversityKonuralp, DuzceTurkey
  3. 3.Department of Medical Microbiology, Faculty of MedicineDuzce UniversityKonuralp, DuzceTurkey
  4. 4.Department of Medical Biology, Faculty of Medicine, Duzce UniversityDuzce UniversityKonuralp, DuzceTurkey

Personalised recommendations