Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 277–283 | Cite as

Effect of Structure of Polymeric Nickel Complexes with Salen-Type Ligands on the Rate of Their Electroactivity Decay in Solutions of Water-Containing Electrolytes

  • V. A. Ershov
  • E. V. Alekseeva
  • A. S. Konev
  • N. S. Chirkov
  • T. A. Stelmashuk
  • O. V. Levin
Article
  • 15 Downloads

Abstract

The influence of the structure of diimine bridge in the Schiff’s bases (derivatives of N,N'-ethylenebissalicylimine) on the rate of the loss of electroactivity of their complexes with nickel in acetonitrile containing 0.1 M of tetraethylammonium tetrafluoroborate (anhydrous and upon addition of 1 wt % of water) has been studied. It has been shown that the presence of bulky yet light methyl groups in the structure of diimine bridge significantly reduced the loss of electroactivity (37% of the initial capacity retained after 50 cycles) as compared to the ligand containing no substituents and containing phenyl group as the substituent (17 and 20%, respectively, of initial capacity retained after 50 cycles).

Keywords

Schiff’s bases polymer-modified electrodes specific capacity degradation of electroactivity aqueous electrolytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giri, S., Ghosh, D., Malas, A., and Das, C.K., J. Electron. Mater., 2013, vol. 42, p. 2595. doi 10.1007/s11664-013-2562-7CrossRefGoogle Scholar
  2. 2.
    Burke, A., J. Power Sources, 2000, vol. 91, p. 37. doi 10.1016/S0378-7753(00)00485-7CrossRefGoogle Scholar
  3. 3.
    Inagaki, M., Konno, H., and Tanaike, O., J. Power Sources, 2010, vol. 195, p. 7880. doi 10.1016/j.jpowsour.2010.06.036CrossRefGoogle Scholar
  4. 4.
    Hu, C.C., Huang, Y.H., and Chang, K.H., J. Power Sources, 2002, vol. 108, p. 117. doi 10.1016/S0378-7753(02)00011-3CrossRefGoogle Scholar
  5. 5.
    Luo, J., Jiang, S.S., Liu, R., Zhang, Y.J., and Liu, X.Y., Electrochim. Acta, 2013, vol. 96, p. 103. doi 10.1016/j.electacta.2013.02.072CrossRefGoogle Scholar
  6. 6.
    Wang, X., Wang, T.M., Yang, C., Li, H.D., and Liu, P., Appl. Surf. Sci., 2013, vol. 287, p. 242. doi 10.1016/j.apsusc.2013.09.134CrossRefGoogle Scholar
  7. 7.
    Chepurnaya, I.A., Gaman’kov, P.V., Rodyagina, T.Yu., Vasil’eva, S.V., and Timonov, A.M., Russ. J. Electrochem., 2003, vol. 39, p. 314.CrossRefGoogle Scholar
  8. 8.
    Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., and Malev, V.V., Electrochim. Acta, 2013, vol. 109, p. 153. doi 10.1016/j.electacta.2013.07.070CrossRefGoogle Scholar
  9. 9.
    Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., and Levin, O.V., Electrochim. Acta, 2017, vol. 225, p. 378. doi 10.1016/j.electacta.2016.12.135CrossRefGoogle Scholar
  10. 10.
    Mandic, Z., Rokovic, M.K., and Pokupcic, T., Electrochim. Acta, 2009, vol. 54, p. 2941. doi 10.1016/j.electacta.2008.11.002CrossRefGoogle Scholar
  11. 11.
    Ryu, K.S., Kim, K.M., Park, Y.J., Park, N.-G., Kang, M.G., and Chang, S.H., Solid State Ionics, 2002, vols. 152–153, p. 861. doi 10.1016/S0167-2738(02) 00386-7CrossRefGoogle Scholar
  12. 12.
    Lai, L.F., Wang, L., Yang, H.P., Sahoo, N.G., Tam, Q.X., Liu, J.L., Poh, C.K., Lim, S.H., Shen, Z.X., and Lin, J.Y., Nano Energy, 2012, vol. 1, p. 723. doi 10.1016/j.nanoen.2012.05.012CrossRefGoogle Scholar
  13. 13.
    Wang, J., Xu, Y.L., Chen, X., and Du, X.F., J. Power Sources, 2007, vol. 163, p. 1120. doi 10.1016/j.jpowsour.2006.10.004CrossRefGoogle Scholar
  14. 14.
    Tripathi, S.K., Kumar, A., and Hashmi, S.A., Solid State Ionics, 2006, vol. 177, p. 2979. doi 10.1016/j.ssi.2006.03.059CrossRefGoogle Scholar
  15. 15.
    Hsu, Y.K., Chen, Y.C., Lin, Y.G., Chen, L.C., and Chen, K.H., J. Power Sources, 2013, vol. 242, p. 718. doi 10.1016/j.jpowsour.2013.05.153CrossRefGoogle Scholar
  16. 16.
    Ates, M., Uludag, N., Karazehir, T., and Arican, F., Polym.-Plast. Technol. Eng., 2014, vol. 53, p. 1070. doi 10.1080/03602559., 2014.886072CrossRefGoogle Scholar
  17. 17.
    Rosario-Canales, M.R., Deria, P., Therien, M.J., and Santiago-Aviles, J.J., ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 102. doi 10.1021/Am201041pCrossRefGoogle Scholar
  18. 18.
    Snook, G.A. and Chen, G.Z., J. Electroanal. Chem., 2008, vol. 612, p. 140. doi 10.1016/j.jelechem.2007.08.024CrossRefGoogle Scholar
  19. 19.
    Novozhilova, M.V., Smirnova, E.A., Karushev, M.P., Timonov, A.M., Malev, V.V., and Levin, O.V., Russ. J. Electrochem., 2016, vol. 52, p. 1183. doi 10.1134/s1023193516120107CrossRefGoogle Scholar
  20. 20.
    Ennis, B.C. and Truong, V.T., Synth. Met., 1993, vol. 59, p. 387. doi 10.1016/0379-6779(93)91170-7CrossRefGoogle Scholar
  21. 21.
    Hacaloğlu, J., Yiğit, S., Akbulut, U., and Toppare, L., Polymer, 1997, vol. 38, p. 5119.CrossRefGoogle Scholar
  22. 22.
    Hagiwara, T., Yamaura, M., and Iwata, K., Synth. Met., 1988, vol. 25, p. 243. doi 10.1016/0379-6779(88)90249-4CrossRefGoogle Scholar
  23. 23.
    Li, J., Gao, F., Zhang, Y., Kang, F., Wang, X., Ye, F., and Yang, J., Sci. China. Chem., 2012, vol. 55, p. 1338. doi 10.1007/s11426-012-4585-yCrossRefGoogle Scholar
  24. 24.
    Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic Plenum, 1999.CrossRefGoogle Scholar
  25. 25.
    Gourdin, G., Jiang, T., Smith, P., and Qu, D.Y., J. Power Sources, 2012, vol. 215, p. 179. doi 10.1016/j.jpowsour.2012.04.046CrossRefGoogle Scholar
  26. 26.
    Markoulidis, F., Lei, C., Lekakou, C., Duff, D., Khalil, S., Martorana, B., and Cannavaro, I., Carbon, 2014, vol. 68, p. 58. doi 10.1016/j.carbon.2013.08.040CrossRefGoogle Scholar
  27. 27.
    Yoo, H.D., Jang, J.H., Ryu, J.H., Park, Y., and Oh, S.M., J. Power Sources, 2014, vol. 267, p. 411. doi 10.1016/j.jpowsour.2014. 05.058CrossRefGoogle Scholar
  28. 28.
    Ishimoto, S., Asakawa, Y., Shinya, M., and Naoi, K., J. Electrochem. Soc., 2009, vol. 156, p. A563. doi 10.1149/1.3126423Google Scholar
  29. 29.
    Vasil’eva, S.V., Balashev, K.P., and Timonov, A.M., Russ. J. Electrochem., 1998, vol. 34, p. 978.Google Scholar
  30. 30.
    Li, J.L., Gao, F., Zhang, Y.K., and Wang, X.D., Chin. J. Polym. Sci., 2010, vol. 28, p. 667. doi 10.1007/s10118-010-0083-xCrossRefGoogle Scholar
  31. 31.
    Audebert, P., Capdevielle, P., and Maumy, M., New J. Chem., 1992, vol. 16, p. 697.Google Scholar
  32. 32.
    Malev, V.V. and Timonov, A.M., Polimer-modifitsirovannye elektrody (Polymer-Modified Electrodes), St. Petersburg: Nestor-Istoriya, 2012.Google Scholar
  33. 33.
    Levin, O.V., Karushev, M.P., Timonov, A.M., Alekseeva, E.V., Zhang, S., and Malev, V.V., Electrochim. Acta, 2013, vol. 109, p. 153. doi 10.1016/j.electacta.2013.07.070CrossRefGoogle Scholar
  34. 34.
    Santos, I.C., Vilas-Boas, M., Piedade, M.F.M., Freire, C., Duarte, M.T., and de Castro, B., Polyhedron, 2000, vol. 19, p. 655. doi 10.1016/S0277-5387(00)00300-4CrossRefGoogle Scholar
  35. 35.
    Viciano-Chumillas, M., Li, D., Smogunov, A., Latil, S., Dappe, Y.J., Barreteau, C., Mallah, T., and Silly, F., Chem. Eur. J., 2014, vol. 20, p. 13566. doi 10.1002/chem.201403169CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Ershov
    • 1
  • E. V. Alekseeva
    • 1
  • A. S. Konev
    • 1
  • N. S. Chirkov
    • 1
  • T. A. Stelmashuk
    • 1
  • O. V. Levin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations