Advertisement

Russian Journal of General Chemistry

, Volume 88, Issue 2, pp 199–207 | Cite as

Hydrogenation of Ketones on Dispersed Chiral-Modified Palladium Nanoparticles

  • L. O. Nindakova
  • V. O. Strakhov
  • S. S. Kolesnikov
Article
  • 37 Downloads

Abstract

Hydrogenation of acetophenone and esters of ketoacids with molecular hydrogen in the presence of the Pd(acac)2–(–)-cinchonidine–H2 catalytic system has been studied. The dependence of the molar ratio of (–)-cinchonidine/Pd on size and shape of palladium nanoparticles, formed in the system, also on reaction rate and enantioselectivity has been established. The nature of the regularities observed for the Pd(acac)2–(–)-cinchonidine–H2 catalytic system was discussed.

Keywords

palladium nanoparticles chiral modification cinchonidine hydrogenation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bukhtiyarov, V.I. and Slin’ko, M.G., Russ. Chem. Rev., 2001, vol. 70, no. 2, p. 147. doi 10.1070/RC2001v070n02ABEH000637CrossRefGoogle Scholar
  2. 2.
    Borah, B.J., Saikia, K., Saikia, P.P., Barua, N.Ch., and Dutta, D.K., Catalysis Today, 2012, vol. 198, no. 1, p. 174. doi 10.1016/j.cattod.2012.03.083CrossRefGoogle Scholar
  3. 3.
    Dinç, M., Metina Ö., and Özkar, S., Catalysis Today, 2012, vol. 183, no. 1, p. 10. doi 10.1016/j.cattod.2011.05.007CrossRefGoogle Scholar
  4. 4.
    Zhu, C., Zeng, J., Lu, P., Liu, J., Gu, Zh., and Xia, Y., Chem. Eur. J., 2013, vol. 19, no. 16, p. 5127. doi 10.1002/chem.201203787CrossRefGoogle Scholar
  5. 5.
    Zhang, H., Jin, M., Xiong, Y., Lim, B., and Xia, Y., Acc. Chem. Res., 2013, vol. 46, no. 8, p. 1783. doi 10.1021/ar300209wCrossRefGoogle Scholar
  6. 6.
    Ramsurn, H. and Gupta, R.B., in New and Future Developments in Catalysis. Catalysis by Nanoparticles, Suib, S.L., Ed., Amsterdam; Boston; Heidelberg: Elsevier, 2013, ch. 15, p. 347.Google Scholar
  7. 7.
    Mallick, K., Witcomb, M., J., Dinsmore, A., and Scurrell, M.S., J. Mater. Sci., 2006, vol. 41, no. 6, p. 1733. doi 10.1007/s10853-006-3950-7CrossRefGoogle Scholar
  8. 8.
    Pushkarev, V.V., Zhu, Z., An, K., Hervier, A., and Somorjai, G.A., Top Catal., 2012, vol. 55, nos. 19–20, p. 1257. doi 10.1007/s11244-012-9915-yCrossRefGoogle Scholar
  9. 9.
    Roy, S. and Perics, M.A., Org. Biomol. Chem., 2009, vol. 7, no. 13, p. 2669. doi 10.1039/b903921jCrossRefGoogle Scholar
  10. 10.
    Barbaro, P., Santo, V.D., and Liguori, F., Dalton Trans., 2010, vol. 39, no. 36, p. 8391. doi 10.1039/c002051fCrossRefGoogle Scholar
  11. 11.
    Harris, K.D.M. and Thomas, J.M., ChemCatChem., 2009, vol. 1, no. 2, p. 223. doi 10.1002/cctc.200900181CrossRefGoogle Scholar
  12. 12.
    Wu, B. and Zheng, N., Nano Today, 2013, vol. 8, no. 2, p. 168. doi 10.1016/j.nantod.2013.02.006CrossRefGoogle Scholar
  13. 13.
    Watt, J., Cheong, S., and Tilley, R.D., Nano Today, 2013, vol. 8, no. 2, p. 198. doi 10.1016/j.nantod.2013.03.001CrossRefGoogle Scholar
  14. 14.
    Semagina, N., Renken, A., and Kiwi-Minsker, L., J. Phys. Chem. (C), 2007, vol. 111, no. 37, p. 13933. doi 10.1021/jp073944kCrossRefGoogle Scholar
  15. 15.
    Semagina, N., Renken, A., Laub, D., and Kiwi-Minsker, L., J. Catalysis, 2007, vol. 246, no. 2, p. 308. doi 10.1016/j.jcat.2006.12.011CrossRefGoogle Scholar
  16. 16.
    Yasukawa, T., Miyamura, H., and Kobayashi, S., ACS Catal., 2016, vol. 6, no. 11, p. 7979. doi 10.1021/acscatal.6b02446CrossRefGoogle Scholar
  17. 17.
    Yasukawa, T., Suzuki, A., Miyamura, H., Nishino, K., and Kobayashi, S., J. Am. Chem. Soc., 2015, vol. 137, no. 20, p. 6616. doi 10.1021/jacs.5b02213CrossRefGoogle Scholar
  18. 18.
    Bartók, M., Felföldi, K., Szöllösi, G., and Bartók, T., Catal. Lett., 1999, vol. 61, no. 1, p. 1. doi 10.1023/A:1019008519015CrossRefGoogle Scholar
  19. 19.
    Baiker, A., J. Mol. Cat. (A), 2000, vol. 163, nos. 1–2, p. 205. doi 10.1023/A:1019008519015CrossRefGoogle Scholar
  20. 20.
    Murzin, D.Yu. and Toukoniitty, E., React. Kinet. Catal. Lett., 2007, vol. 90, no. 1, p. 19. doi 10.1007/s11144-007-5004-9CrossRefGoogle Scholar
  21. 21.
    Szöllösi, G., Hermán, B., Fülöp, F., and Bartók, M., React. Kinet. Catal. Lett., 2006, vol. 88, no. 2, p. 391. doi 10.1007/s11144-006-0076-5CrossRefGoogle Scholar
  22. 22.
    Burgi, T. and Baiker, A., Acc. Chem. Res., 2004, vol. 37, no. 11, p. 909. doi 10.1021/ar040072l.CrossRefGoogle Scholar
  23. 23.
    Margitfalvi, J.L. and Tfirst, E., J. Mol. Cat. (A), 1999, vol. 139, no. 1, p. 81. doi 10.1016/S1381-1169(98) 00197-6CrossRefGoogle Scholar
  24. 24.
    Bartók, M., Balázsik, K., and Notheisz, F., React. Kinet. Catal. Lett., 2002, vol. 77, no. 2, p. 363. doi 10.1023/A:1020852405963CrossRefGoogle Scholar
  25. 25.
    Yasukawa, T., Suzuki, A., Miyamura, H., Nishino, K., and Kobayashi, S., J. Am. Chem. Soc., 2015, vol. 137, no. 20, p. 6616. doi 10.1021/jacs.5b02213CrossRefGoogle Scholar
  26. 26.
    Bonnemann, H. and Braun, G.A., Chem. Eur. J., 1997, vol. 3, no. 8, p. 1200. doi 10.1002/chem.19970030805CrossRefGoogle Scholar
  27. 27.
    Studer, M., Blaser, H.-U., and Exner, C., Adv. Synth. Catal., 2003, vol. 345, no. 1–2, p. 45. doi 10.1002/adsc.200390029CrossRefGoogle Scholar
  28. 28.
    Mink, L., Ma, Zh., Olsen, R.A., James, J.N., Sholl, D.S., Mueller, L.J., and Zaera, F., Top Catal., 2008, vol. 48, nos. 1–4, p. 120. doi 10.1007/s11244-008-9041-zCrossRefGoogle Scholar
  29. 29.
    Hisaki, I., Hiraishi, E., Sasaki, T., Orita, H., Tsuzuki, S., Tohnai, N., and Miyata, M., Chem. Asian J., 2012, vol. 7, no. 11, p. 2607. doi 10.1002/asia.201200566CrossRefGoogle Scholar
  30. 30.
    Kubota, J. and Zaera, F., J. Am. Chem. Soc., 2001, vol. 123, no. 44, p. 11115. doi 10.1021/ja016722nCrossRefGoogle Scholar
  31. 31.
    Mallat, T., Orglmeister, E., and Baiker, A., Chem. Rev., 2007, vol. 107, no. 11, p. 4863. doi 10.1021/cr0683663CrossRefGoogle Scholar
  32. 32.
    Huang, Y., Chen, J., Chen, H., Li, R., Li, Y., Min, L., and Li, X., J. Mol. Cat. (A), 2001, vol. 170, nos. 1–2, p. 143. doi 10.1016/S1381-1169(01)00053-XCrossRefGoogle Scholar
  33. 33.
    Collier, P.J., Hall, T.J., Iggo, J.A., Johnston, P., Slipszenko, J.A., Wells, P.B., and Whyman, R., Chem. Commun., 1998, no. 14, p. 1451. doi 10.1039/A803901ACrossRefGoogle Scholar
  34. 34.
    Zhang, J., Yan, X., and Liu, H., J. Mol. Cat. (A), 2001, vol. 176, nos. 1–2, p. 281. doi 10.1016/S1381-1169(01) 00268-0CrossRefGoogle Scholar
  35. 35.
    Vargas, A., Hoxha, F., Bonalumi, N., Mallat, T., and Baiker, A., J. Catal., 2006, vol. 240, no. 2, p. 203. doi 10.1016/j.jcat.2006.03.022CrossRefGoogle Scholar
  36. 36.
    Gniewek, A., Ziółkowski, J.J., Trzeciak, A.M., and Kępiński, L., J. Catal., 2006, vol. 239, no. 2, p. 272. doi 10.1016/j.jcat.2006.02.002CrossRefGoogle Scholar
  37. 37.
    Durand, J., Teuma, E., and Gómez, M., Eur. J. Inorg. Chem., 2008, p. 3577. doi 10.1002/ejic.200800569Google Scholar
  38. 38.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1992, vol. 3, p. 440.Google Scholar
  39. 39.
    Ivanovskii, A.L., Russ. Chem. Rev., 2009, vol. 78, no. 4, p. 303. doi 10.1070/RC2009v078n04ABEH004036CrossRefGoogle Scholar
  40. 40.
    Baiker, A., Catalysis Today, 2005, vol. 100, p. 159. doi 10.1016/j.cattod.2004.12.001CrossRefGoogle Scholar
  41. 41.
    Kraynov, A., Suchopar, A., and Richards, R., Catal. Lett., 2006, vol. 110, nos. 1–2, p. 91. doi 10.1007/s10562-006-0090-2CrossRefGoogle Scholar
  42. 42.
    USA Patent 3474464, 1969; Ross. Zh. Khim., 1970, 19N102P.Google Scholar
  43. 43.
    Chambers, W.J., Brasen, W.R., and Hause, Ch.R., J. Am. Chem. Soc., 1957, vol. 79, no. 4, p. 879. doi 10.1021/ja01561a025CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. O. Nindakova
    • 1
  • V. O. Strakhov
    • 1
  • S. S. Kolesnikov
    • 1
  1. 1.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations