Skip to main content
Log in

Molecular machines as a driving force of progress in modern post-industrial society

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The review considers main advances achieved in recent years in a fairly old and simultaneously modern field of research, controlled motion at the molecular level and its practical transformation in the form of synthetic molecular machines and devices. The basic principles of the design and controlled linear and rotational motion in such molecular systems and various useful functions potentially inherent in synthetic molecular machines have been discussed. Examples of already implemented molecular rotors, shuttles, switches, transporters, and muscles are given. Finally, immediate and more distant prospects for the development of this fascinating and very important field of nanotechnology are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R.P., Eng. Sci., 1960, vol. 23, p. 22.

    Google Scholar 

  2. Shinkai, S. and Manabe, O., Top. Curr. Chem., 1984, vol. 121, p. 67. doi 10.1007/3-540-12821-2_3

    Article  CAS  Google Scholar 

  3. Benniston, A.C., Chem. Soc. Rev., 1996, vol. 25, p. 427. doi 10.1039/CS9962500427

    Article  CAS  Google Scholar 

  4. Gomez-Lopez, M., Preece, J.A., and Stoddart, J.F., Nanotechnology, 1996, vol. 7, p. 183. doi 10.1088/0957-4484/7/3/004

    Article  CAS  Google Scholar 

  5. Collin, J.-P., Gavina, P., Heitz, V., and Sauvage, J.P., Eur. J. Inorg. Chem., 1998, p. 1. doi 10.1002/(SICI) 1099-0682(199801)1998: 1<1::AID-EJIC1>3.0.CO;2-#

    Google Scholar 

  6. Balzani, V., Credi, A., Raymo, F.M., and Stoddart, J.F., Angew. Chem., Int. Ed., 2000, vol. 39, p. 3348. doi 10.1002/1521-3773(20001002)39:19<3348::AIDANIE3348> 3.0.CO;2-X

    Article  CAS  Google Scholar 

  7. Browne, W.R. and Feringa, B.L., Nature Nanotechnol., 2006, vol. 1, p. 25. doi 10.1038/nnano.2006.45

    Article  CAS  Google Scholar 

  8. Cheng, C. and Stoddart, J.F., ChemPhysChem, 2016, vol. 17, p. 1780. doi 10.1002/cphc.201501155

    Article  CAS  Google Scholar 

  9. Urry, D.W., Angew. Chem., Int. Ed. Engl., 1993, vol. 32, p. 819. doi 10.1002/anie.199308191

    Article  Google Scholar 

  10. Howard, J., Nature, 1997, vol. 389, p. 561. doi 10.1038/39247

    Article  CAS  Google Scholar 

  11. Goodsell, D.S., Our Molecular Nature: The Body’s Motors, Machines, and Messages, New York: Copernicus, 1996.

    Book  Google Scholar 

  12. Weiss, S., Science, 1999, vol. 283, p. 1676. doi 10.1126/science.283.5408.1676

    Article  CAS  Google Scholar 

  13. Tamarat, P., Maali, A., Lounis, B., and Orrit, M., J. Phys. Chem. A, 2000, vol. 104, p. 1. doi 10.1021/jp992505l

    Article  CAS  Google Scholar 

  14. Elston, T., Wang, H., and Oster, G., Nature, 1998, vol. 391, p. 510. doi 10.1038/35185

    Article  CAS  Google Scholar 

  15. Fillingame, R.H., Science, 1999, vol. 286, p. 1687. doi 10.1126/science.286.5445.1687

    Article  CAS  Google Scholar 

  16. Stock, D., Leslie, A.G.W., and Walker, J.E., Science, 1999, vol. 286, p. 1700. doi 10.1126/science.286.5445.1700

    Article  CAS  Google Scholar 

  17. Boyer, P., Biochim. Biophys. Acta, 1993, vol. 1140, p. 215. doi 10.1016/0005-2728(93)90063-L

    Article  CAS  Google Scholar 

  18. Finer, J.T., Simmons, R.M., and Spudich, J.A., Nature, 1994, vol. 368, p. 113. doi 10.1038/368113a0

    Article  CAS  Google Scholar 

  19. Noji, H., Yasuda, R., Yoshida, M., and Kinoshita, K., Jr., Nature, 1997, vol. 386, p. 299. doi 10.1038/386299a0

    Article  CAS  Google Scholar 

  20. Vall, R.D. and Milligan, R.A., Science, 2000, vol. 288, p. 88. doi 10.1126/science.288.5463.88

    Article  Google Scholar 

  21. Walker, M.L., Burgess, S.A., Sellars, J.R., Wang, F., Hammler, J.A. III, Trinick, J., and Knight, P.J., Nature, 2000, vol. 405, p. 804. doi 10.1038/35015592

    Article  CAS  Google Scholar 

  22. Endow, S.A. and Higuchi, H., Nature, 2000, vol. 406, p. 913. doi 10.1038/35022617

    Article  CAS  Google Scholar 

  23. Wang, M.D., Schnitzer, M.J., Yin, H., Landick, R., Gelles, J., and Block, S.M., Science, 1998, vol. 282, p. 902. doi 10.1126/science.282.5390.902

    Article  CAS  Google Scholar 

  24. Huang, J.-D., Brady, S.T., Richards, B.W., Stenoien, D., Resau, J.H., Copeland, N.G., and Jenkins, N.A., Nature, 1999, vol. 397, p. 267. doi 10.1038/16722

    Article  CAS  Google Scholar 

  25. Frisch, H., Martin, I., and Mark, H., Monatsh. Chem., 1953, vol. 84, no. 2, p. 250. doi 10.1007/BF00899187

    Article  CAS  Google Scholar 

  26. L’ttringhaus, A., Cramer, F., Prinzbach, H., and Henglein, F.M., Justus Liebigs Ann. Chem., 1958, vol. 613, no. 1, p. 185. doi 10.1002/jlac.19586130120

    Article  Google Scholar 

  27. Wasserman, E., J. Am. Chem. Soc., 1960, vol. 82, no. 16, p. 4433. doi 10.1021/ja01501a082

    Article  CAS  Google Scholar 

  28. Schill, G. and Lüttringhaus, A., Angew. Chem., Int. Ed. Engl., 1964, vol. 3, no. 8, p. 546. doi 10.1002/anie.196405461

    Article  Google Scholar 

  29. Schill, G., Chem. Ber., 1967, vol. 100, no. 6, p. 2021. doi 10.1002/cber.19671000631

    Article  CAS  Google Scholar 

  30. Vetter, W. and Schill, G., Tetrahedron, 1967, vol. 23, no. 7, p. 3079. doi 10.1016/S0040-4020(01)83366-4

    Article  CAS  Google Scholar 

  31. Harrison, I.T. and Harrison, S., J. Am. Chem. Soc., 1967, vol. 89, no. 22, p. 5723. doi 10.1021/ja00998a052

    Article  CAS  Google Scholar 

  32. Dietrich-Buchecker, C.O., Sauvage, J.P., and Kintzinger, J.P., Tetrahedron Lett., 1983, vol. 24, no. 46, p. 5095. doi 10.1016/S0040-4039(00)94050-4

    Article  CAS  Google Scholar 

  33. Dietrich-Buchecker, C.O., Marnot, P.A., and Sauvage, J.P., Tetrahedron Lett., 1982, vol. 23, p. 5291. doi 10.1016/S0040-4039(00)85821-9

    Article  CAS  Google Scholar 

  34. Sauvage, J.-P. and Weiss, J., J. Am. Chem. Soc., 1985, vol. 107, p. 6108. doi 10.1021/ja00307a049

    Article  CAS  Google Scholar 

  35. Dietrich-Buchecker, C.O. and Sauvage, J.-P., Angew. Chem., Int. Ed. Engl., 1989, vol. 28, no. 2, p. 189. doi 10.1002/anie.198901891

    Article  Google Scholar 

  36. Nierengarten, J.-F., Dietrich-Buchecker, C.O., and Sauvage, J.-P., J. Am. Chem. Soc., 1994, vol. 116, p. 375. doi 10.1021/ja00080a045

    Article  CAS  Google Scholar 

  37. Cesario, M., Dietrich-Buchecker, C.O., Guilhem, J., Pascard, C., and Sauvage, J.-P., J. Chem. Soc., Chem. Commun., 1985, p. 244. doi 10.1039/C39850000244

    Google Scholar 

  38. Livoreil, A., Dietrich-Buchecker, C.O., and Sauvage, J.-P., J. Am. Chem. Soc., 1994, vol. 116, p. 9399. doi 10.1021/ja00099a095

    Article  CAS  Google Scholar 

  39. Livoreil, A., Sauvage, J.-P., Arrnaroli, N., Balzani, V., Flarnigni, L., and Ventura, B., J. Am. Chem. Soc., 1997, vol. 119, p. 12114. doi 10.1021/ja9720826

    Article  CAS  Google Scholar 

  40. Anelli, P.L., Spencer, N., and Stoddart, J.F., J. Am. Chem. Soc., 1991, vol. 113, p. 5873. doi 10.1021/ja00015a057

    Article  Google Scholar 

  41. Odell, B., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., and Williams, D.J., Angew. Chem., Int. Ed. Engl., 1988, vol. 27, no. 11, p. 1547. doi 10.1002/anie.198815471

    Article  Google Scholar 

  42. Bissell, R.A., Córdova, E., Kaifer, A.E., and Stoddart, J.F., Nature, 1994, vol. 369, p. 133. doi 10.1038/369133a0

    Article  CAS  Google Scholar 

  43. Córdova, E., Bissell, R.A., Spencer, N., Ashton, P.R., Stoddart, J.F., and Kaifer, A.E., J. Org. Chem., 1993, vol. 58, p. 6550. doi 10.1021/jo00076a008

    Article  Google Scholar 

  44. Collin, J.P., Gavina, P., and Sauvage, J.P., Chem. Commun., 1996, no. 17, p. 2005. doi 10.1039/CC9960002005

    Article  Google Scholar 

  45. Amabilino, D.B., Dietrich-Buchecker, C.O., Livoreil, A., Perez-Garcia, L., Sauvage, J.P., and Stoddart, J.F., J. Am. Chem. Soc., 1996, vol. 118, no. 16, p. 3905. doi 10.1021/ja954329+

    Article  CAS  Google Scholar 

  46. Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Langford, S.J., Menzer, S., Prodi, L., Stoddart, J.F., Venturi, M., and Williams, D.J., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, no. 9, p. 978. doi 10.1002/anie.199609781

    Article  CAS  Google Scholar 

  47. Raehm, L., Kern, J.M., and Sauvage, J.P., Chem. Eur. J., 1999, vol. 5, no. 11, p. 3310. doi 10.1002/(SICI)1521-3765(19991105)5: 11<3310::AID-CHEM3310>3.0.CO;2-R

    Article  CAS  Google Scholar 

  48. Mobian, P., Kern, J.-M., and Sauvage, J.-P., Angew. Chem., Int. Ed., 2004, vol. 43, p. 2392. doi 10.1002/anie.200352522

    Article  CAS  Google Scholar 

  49. Jiménez, M.C., Dietrich-Buchecker, C.O., and Sauvage, J.-P., Angew. Chem., Int. Ed., 2000, vol. 39, no. 18, p. 3284. doi 10.1002/1521-3773(20000915)39:18<3284::AIDANIE3284> 3.0.CO;2-7

    Article  Google Scholar 

  50. Badjić, J.D., Balzani, V., Credi, A., Silvi, S., and Stoddart, J.F., Science, 2004, vol. 303, no. 5665, p. 1845. doi 10.1126/science. 1094791

    Article  Google Scholar 

  51. Huang, T.J., Brough, B., Hoa, C.-M., Liu, Y., Flood, A.H., Bonvallet, P.A., Tseng, H.-R., Stoddart, J.F., Baller, M., and Magonov, S., Appl. Phys. Lett., 2004, vol. 85, p. 5391. doi 10.1063/1.1826222

    Article  CAS  Google Scholar 

  52. Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.-R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M., Magonov, S., Solares, S.D., Goddard, W.A., Ho, C.-M., and Stoddard, J.F., J. Am. Chem. Soc., 2005, vol. 127, no. 27, p. 9745. doi 10.1021/ja051088p

    Article  CAS  Google Scholar 

  53. Collier, C.P., Wong, E.W., Belohradsk, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., and Heath, J.R., Science, 1999, vol. 285, no. 5426, p. 391. doi 10.1126/science.285. 5426.391

    Article  CAS  Google Scholar 

  54. Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., and Heath, J.R., Science, 2000, vol. 289, no. 5482, p. 1172. doi 10.1126/science.289. 5482.1172

    Article  CAS  Google Scholar 

  55. Collier, C.P., Jeppesen, J.O., Luo, Y., Perkins, J., Wong, E.W., Heath, J.R., and Stoddart, J.F., J. Am. Chem. Soc., 2001, vol. 123, no. 50, p. 12632. doi 10.1021/ja0114456

    Article  CAS  Google Scholar 

  56. Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H.R., Stoddart, J.F., and Heath, J.R., Nature, 2007, vol. 445, no. 7126, p. 414. doi 10.1038/nature05462

    Article  CAS  Google Scholar 

  57. Balzani, V., Clemente-Len, M., Credi, A., Ferrer, B., Venturi, M., Flood, A.H., and Stoddart, J.F., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 5, p. 1178. doi 10.1073/pnas.0509011103

    Article  CAS  Google Scholar 

  58. Mislow, K., Chemtracts: Org. Chem., 1989, vol. 2, p. 151.

    Google Scholar 

  59. Akkerman, O.S. and Coops, J., Recl. Trav. Chim. Pays–Bas, 1967, vol. 86, p. 755. doi 10.1002/recl.19670860711

    Article  CAS  Google Scholar 

  60. Akkerman, O.S., Recl. Trav. Chim. Pays–Bas., 1970, vol. 89, p. 673. doi 10.1002/recl.19700890702

    Article  CAS  Google Scholar 

  61. Weissensteiner, W., Scharf, J., and Schlogl, K., J. Org. Chem., 1987, vol. 52, p. 1210. doi 10.1021/jo00383a006

    Article  CAS  Google Scholar 

  62. Biali, S.E., Nugiel, D.A., and Rappoport, Z., J. Am. Chem. Soc., 1989, vol. 111, p. 846. doi 10.1021/ja00185a010

    Article  CAS  Google Scholar 

  63. Bergman, J.J. and Chandler, W.D., Can. J. Chem., 1972, vol. 50, p. 353. doi 10.1139/v72-053

    Article  CAS  Google Scholar 

  64. Kwart, H. and Alekman, S., J. Am. Chem. Soc., 1968, vol. 90, p. 4482. doi 10.1021/ja01018a065

    Article  CAS  Google Scholar 

  65. Kawada, Y., Ishikawa, J., Yamazaki, H., Koga, G., Murata, S., and Iwamura, H., Tetrahedron Lett., 1987, vol. 28, p. 445. doi 10.1016/S0040-4039(00)95752-6

    Article  CAS  Google Scholar 

  66. Iwamura, H. and Mislow, K., Acc. Chem. Res., 1988, vol. 21, p. 175. doi 10.1021/ar00148a007

    Article  CAS  Google Scholar 

  67. Clayden, J., Pink, J.H., and Yasin, S.A., Tetrahedron Lett., 1998, vol. 39, p. 105. doi 10.1016/S0040-4039 (97)10443-9

    Article  CAS  Google Scholar 

  68. Clayden, J. and Pink, J.H., Angew. Chem., 1998, vol. 110, p. 2040. doi 10.1002/(SICI)1521-3757(19980703) 110:13/14<2040:: AID-ANGE2040>3.0.CO;2-Y

    Article  Google Scholar 

  69. Cozzi, F., Guenzi, A., Johnson, C.A., Mislow, K., Hounshell, W.D., and Blount, J.F., J. Am. Chem. Soc., 1981, vol. 103, p. 957. doi 10.1021/ja00394a048

    Article  CAS  Google Scholar 

  70. Koumura, N., Zijlstra, R.W., van Delden, R.A., Harada, N., and Feringa, B.L., Nature, 1999, vol. 401, no. 6749, p. 152. doi 10.1038/43646

    Article  CAS  Google Scholar 

  71. Vachon, J., Carroll, G.T., Pollard, M.M., Mes, E.M., Brouwer, A.M., and Feringa, B.L., Photochem. Photobiol. Sci., 2014, vol. 13, p. 241. doi 10.1039/c3pp50208b

    Article  CAS  Google Scholar 

  72. Van Delden, R.A., ter Wiel, M.K., Pollard, M.M., Vicario, J., Koumura, N., and Feringa, B.L., Nature, 2005, vol. 437, no. 7063, p. 1337. doi 10.1038/nature04127

    Article  Google Scholar 

  73. Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., and Feringa, B.L., Nature, 2006, vol. 440, no. 7081, p. 163. doi 10.1038/440163a

    Article  CAS  Google Scholar 

  74. Fletcher, S.P., Dumur, F., Pollard, M.M., and Feringa, B.L., Science, 2005, vol. 310, no. 5745, p. 80. doi 10.1126/science.1117090

    Article  CAS  Google Scholar 

  75. Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., and Feringa, B.L., Nat. Chem., 2011, vol. 3, p. 53. doi 10.1038/nchem. 872

    Article  CAS  Google Scholar 

  76. Shirai, Y., Osgood, A.J., Zhao, Y.M., Kelly, K.F., and Tour, J.M., Nano Lett., 2005, vol. 5, no. 11, p. 2330. doi 10.1021/nl051915k

    Article  CAS  Google Scholar 

  77. Morin, J.-F., Shirai, Y., and Tour, J.M., Org. Lett., 2006, vol. 8, no. 8, p. 1713. doi 10.1021/ol060445d

    Article  CAS  Google Scholar 

  78. Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.-H., and Feringa, B.L., Nature, 2011, vol. 479, no. 7372, p. 208. doi 10.1038/nature 10587

    Article  CAS  Google Scholar 

  79. Macrocyclic and Supramolecular Chemistry, Izatt, R.M., Ed., Chichester: Wiley, 2016. doi 10.1002/9781119053859.ch1

  80. Peplow, M., Nature, 2015, vol. 525, p. 18. doi 10.1038/525018a.

    Article  CAS  Google Scholar 

  81. Balzani, V., Credi, A., and Venturi, M., Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, Weinheim: Wiley-VCH, 2008. doi 10.1002/9783527621682

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lukov.

Additional information

Original Russian Text © V.V. Lukov, I.N. Shcherbakov, S.I. Levchenkov, Yu.P. Tupolova, L.D. Popov, I.V. Pankov, S.V. Posokhova, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 11, pp. 1889–1905.

What would be the utility of such machines? Who knows?... I can’t see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.

R.P. Feynman, l959

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukov, V.V., Shcherbakov, I.N., Levchenkov, S.I. et al. Molecular machines as a driving force of progress in modern post-industrial society. Russ J Gen Chem 87, 2627–2642 (2017). https://doi.org/10.1134/S1070363217110184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217110184

Keywords

Navigation