Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 11, pp 2627–2642 | Cite as

Molecular machines as a driving force of progress in modern post-industrial society

  • V. V. Lukov
  • I. N. Shcherbakov
  • S. I. Levchenkov
  • Yu. P. Tupolova
  • L. D. Popov
  • I. V. Pankov
  • S. V. Posokhova
Article
  • 46 Downloads

Abstract

The review considers main advances achieved in recent years in a fairly old and simultaneously modern field of research, controlled motion at the molecular level and its practical transformation in the form of synthetic molecular machines and devices. The basic principles of the design and controlled linear and rotational motion in such molecular systems and various useful functions potentially inherent in synthetic molecular machines have been discussed. Examples of already implemented molecular rotors, shuttles, switches, transporters, and muscles are given. Finally, immediate and more distant prospects for the development of this fascinating and very important field of nanotechnology are presented.

Keywords

molecular machines controlled motion mechanochemical cycle topochemistry catenanes rotaxanes translational isomerism molecular robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feynman, R.P., Eng. Sci., 1960, vol. 23, p. 22.Google Scholar
  2. 2.
    Shinkai, S. and Manabe, O., Top. Curr. Chem., 1984, vol. 121, p. 67. doi 10.1007/3-540-12821-2_3CrossRefGoogle Scholar
  3. 3.
    Benniston, A.C., Chem. Soc. Rev., 1996, vol. 25, p. 427. doi 10.1039/CS9962500427CrossRefGoogle Scholar
  4. 4.
    Gomez-Lopez, M., Preece, J.A., and Stoddart, J.F., Nanotechnology, 1996, vol. 7, p. 183. doi 10.1088/0957-4484/7/3/004CrossRefGoogle Scholar
  5. 5.
    Collin, J.-P., Gavina, P., Heitz, V., and Sauvage, J.P., Eur. J. Inorg. Chem., 1998, p. 1. doi 10.1002/(SICI) 1099-0682(199801)1998: 1<1::AID-EJIC1>3.0.CO;2-#Google Scholar
  6. 6.
    Balzani, V., Credi, A., Raymo, F.M., and Stoddart, J.F., Angew. Chem., Int. Ed., 2000, vol. 39, p. 3348. doi 10.1002/1521-3773(20001002)39:19<3348::AIDANIE3348> 3.0.CO;2-XCrossRefGoogle Scholar
  7. 7.
    Browne, W.R. and Feringa, B.L., Nature Nanotechnol., 2006, vol. 1, p. 25. doi 10.1038/nnano.2006.45CrossRefGoogle Scholar
  8. 8.
    Cheng, C. and Stoddart, J.F., ChemPhysChem, 2016, vol. 17, p. 1780. doi 10.1002/cphc.201501155CrossRefGoogle Scholar
  9. 9.
    Urry, D.W., Angew. Chem., Int. Ed. Engl., 1993, vol. 32, p. 819. doi 10.1002/anie.199308191CrossRefGoogle Scholar
  10. 10.
    Howard, J., Nature, 1997, vol. 389, p. 561. doi 10.1038/39247CrossRefGoogle Scholar
  11. 11.
    Goodsell, D.S., Our Molecular Nature: The Body’s Motors, Machines, and Messages, New York: Copernicus, 1996.CrossRefGoogle Scholar
  12. 12.
    Weiss, S., Science, 1999, vol. 283, p. 1676. doi 10.1126/science.283.5408.1676CrossRefGoogle Scholar
  13. 13.
    Tamarat, P., Maali, A., Lounis, B., and Orrit, M., J. Phys. Chem. A, 2000, vol. 104, p. 1. doi 10.1021/jp992505lCrossRefGoogle Scholar
  14. 14.
    Elston, T., Wang, H., and Oster, G., Nature, 1998, vol. 391, p. 510. doi 10.1038/35185CrossRefGoogle Scholar
  15. 15.
    Fillingame, R.H., Science, 1999, vol. 286, p. 1687. doi 10.1126/science.286.5445.1687CrossRefGoogle Scholar
  16. 16.
    Stock, D., Leslie, A.G.W., and Walker, J.E., Science, 1999, vol. 286, p. 1700. doi 10.1126/science.286.5445.1700CrossRefGoogle Scholar
  17. 17.
    Boyer, P., Biochim. Biophys. Acta, 1993, vol. 1140, p. 215. doi 10.1016/0005-2728(93)90063-LCrossRefGoogle Scholar
  18. 18.
    Finer, J.T., Simmons, R.M., and Spudich, J.A., Nature, 1994, vol. 368, p. 113. doi 10.1038/368113a0CrossRefGoogle Scholar
  19. 19.
    Noji, H., Yasuda, R., Yoshida, M., and Kinoshita, K., Jr., Nature, 1997, vol. 386, p. 299. doi 10.1038/386299a0CrossRefGoogle Scholar
  20. 20.
    Vall, R.D. and Milligan, R.A., Science, 2000, vol. 288, p. 88. doi 10.1126/science.288.5463.88CrossRefGoogle Scholar
  21. 21.
    Walker, M.L., Burgess, S.A., Sellars, J.R., Wang, F., Hammler, J.A. III, Trinick, J., and Knight, P.J., Nature, 2000, vol. 405, p. 804. doi 10.1038/35015592CrossRefGoogle Scholar
  22. 22.
    Endow, S.A. and Higuchi, H., Nature, 2000, vol. 406, p. 913. doi 10.1038/35022617CrossRefGoogle Scholar
  23. 23.
    Wang, M.D., Schnitzer, M.J., Yin, H., Landick, R., Gelles, J., and Block, S.M., Science, 1998, vol. 282, p. 902. doi 10.1126/science.282.5390.902CrossRefGoogle Scholar
  24. 24.
    Huang, J.-D., Brady, S.T., Richards, B.W., Stenoien, D., Resau, J.H., Copeland, N.G., and Jenkins, N.A., Nature, 1999, vol. 397, p. 267. doi 10.1038/16722CrossRefGoogle Scholar
  25. 25.
    Frisch, H., Martin, I., and Mark, H., Monatsh. Chem., 1953, vol. 84, no. 2, p. 250. doi 10.1007/BF00899187CrossRefGoogle Scholar
  26. 26.
    L’ttringhaus, A., Cramer, F., Prinzbach, H., and Henglein, F.M., Justus Liebigs Ann. Chem., 1958, vol. 613, no. 1, p. 185. doi 10.1002/jlac.19586130120CrossRefGoogle Scholar
  27. 27.
    Wasserman, E., J. Am. Chem. Soc., 1960, vol. 82, no. 16, p. 4433. doi 10.1021/ja01501a082CrossRefGoogle Scholar
  28. 28.
    Schill, G. and Lüttringhaus, A., Angew. Chem., Int. Ed. Engl., 1964, vol. 3, no. 8, p. 546. doi 10.1002/anie.196405461CrossRefGoogle Scholar
  29. 29.
    Schill, G., Chem. Ber., 1967, vol. 100, no. 6, p. 2021. doi 10.1002/cber.19671000631CrossRefGoogle Scholar
  30. 30.
    Vetter, W. and Schill, G., Tetrahedron, 1967, vol. 23, no. 7, p. 3079. doi 10.1016/S0040-4020(01)83366-4CrossRefGoogle Scholar
  31. 31.
    Harrison, I.T. and Harrison, S., J. Am. Chem. Soc., 1967, vol. 89, no. 22, p. 5723. doi 10.1021/ja00998a052CrossRefGoogle Scholar
  32. 32.
    Dietrich-Buchecker, C.O., Sauvage, J.P., and Kintzinger, J.P., Tetrahedron Lett., 1983, vol. 24, no. 46, p. 5095. doi 10.1016/S0040-4039(00)94050-4CrossRefGoogle Scholar
  33. 33.
    Dietrich-Buchecker, C.O., Marnot, P.A., and Sauvage, J.P., Tetrahedron Lett., 1982, vol. 23, p. 5291. doi 10.1016/S0040-4039(00)85821-9CrossRefGoogle Scholar
  34. 34.
    Sauvage, J.-P. and Weiss, J., J. Am. Chem. Soc., 1985, vol. 107, p. 6108. doi 10.1021/ja00307a049CrossRefGoogle Scholar
  35. 35.
    Dietrich-Buchecker, C.O. and Sauvage, J.-P., Angew. Chem., Int. Ed. Engl., 1989, vol. 28, no. 2, p. 189. doi 10.1002/anie.198901891CrossRefGoogle Scholar
  36. 36.
    Nierengarten, J.-F., Dietrich-Buchecker, C.O., and Sauvage, J.-P., J. Am. Chem. Soc., 1994, vol. 116, p. 375. doi 10.1021/ja00080a045CrossRefGoogle Scholar
  37. 37.
    Cesario, M., Dietrich-Buchecker, C.O., Guilhem, J., Pascard, C., and Sauvage, J.-P., J. Chem. Soc., Chem. Commun., 1985, p. 244. doi 10.1039/C39850000244Google Scholar
  38. 38.
    Livoreil, A., Dietrich-Buchecker, C.O., and Sauvage, J.-P., J. Am. Chem. Soc., 1994, vol. 116, p. 9399. doi 10.1021/ja00099a095CrossRefGoogle Scholar
  39. 39.
    Livoreil, A., Sauvage, J.-P., Arrnaroli, N., Balzani, V., Flarnigni, L., and Ventura, B., J. Am. Chem. Soc., 1997, vol. 119, p. 12114. doi 10.1021/ja9720826CrossRefGoogle Scholar
  40. 40.
    Anelli, P.L., Spencer, N., and Stoddart, J.F., J. Am. Chem. Soc., 1991, vol. 113, p. 5873. doi 10.1021/ja00015a057CrossRefGoogle Scholar
  41. 41.
    Odell, B., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., and Williams, D.J., Angew. Chem., Int. Ed. Engl., 1988, vol. 27, no. 11, p. 1547. doi 10.1002/anie.198815471CrossRefGoogle Scholar
  42. 42.
    Bissell, R.A., Córdova, E., Kaifer, A.E., and Stoddart, J.F., Nature, 1994, vol. 369, p. 133. doi 10.1038/369133a0CrossRefGoogle Scholar
  43. 43.
    Córdova, E., Bissell, R.A., Spencer, N., Ashton, P.R., Stoddart, J.F., and Kaifer, A.E., J. Org. Chem., 1993, vol. 58, p. 6550. doi 10.1021/jo00076a008CrossRefGoogle Scholar
  44. 44.
    Collin, J.P., Gavina, P., and Sauvage, J.P., Chem. Commun., 1996, no. 17, p. 2005. doi 10.1039/CC9960002005CrossRefGoogle Scholar
  45. 45.
    Amabilino, D.B., Dietrich-Buchecker, C.O., Livoreil, A., Perez-Garcia, L., Sauvage, J.P., and Stoddart, J.F., J. Am. Chem. Soc., 1996, vol. 118, no. 16, p. 3905. doi 10.1021/ja954329+CrossRefGoogle Scholar
  46. 46.
    Ballardini, R., Balzani, V., Credi, A., Gandolfi, M.T., Langford, S.J., Menzer, S., Prodi, L., Stoddart, J.F., Venturi, M., and Williams, D.J., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, no. 9, p. 978. doi 10.1002/anie.199609781CrossRefGoogle Scholar
  47. 47.
    Raehm, L., Kern, J.M., and Sauvage, J.P., Chem. Eur. J., 1999, vol. 5, no. 11, p. 3310. doi 10.1002/(SICI)1521-3765(19991105)5: 11<3310::AID-CHEM3310>3.0.CO;2-RCrossRefGoogle Scholar
  48. 48.
    Mobian, P., Kern, J.-M., and Sauvage, J.-P., Angew. Chem., Int. Ed., 2004, vol. 43, p. 2392. doi 10.1002/anie.200352522CrossRefGoogle Scholar
  49. 49.
    Jiménez, M.C., Dietrich-Buchecker, C.O., and Sauvage, J.-P., Angew. Chem., Int. Ed., 2000, vol. 39, no. 18, p. 3284. doi 10.1002/1521-3773(20000915)39:18<3284::AIDANIE3284> 3.0.CO;2-7CrossRefGoogle Scholar
  50. 50.
    Badjić, J.D., Balzani, V., Credi, A., Silvi, S., and Stoddart, J.F., Science, 2004, vol. 303, no. 5665, p. 1845. doi 10.1126/science. 1094791CrossRefGoogle Scholar
  51. 51.
    Huang, T.J., Brough, B., Hoa, C.-M., Liu, Y., Flood, A.H., Bonvallet, P.A., Tseng, H.-R., Stoddart, J.F., Baller, M., and Magonov, S., Appl. Phys. Lett., 2004, vol. 85, p. 5391. doi 10.1063/1.1826222CrossRefGoogle Scholar
  52. 52.
    Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.-R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M., Magonov, S., Solares, S.D., Goddard, W.A., Ho, C.-M., and Stoddard, J.F., J. Am. Chem. Soc., 2005, vol. 127, no. 27, p. 9745. doi 10.1021/ja051088pCrossRefGoogle Scholar
  53. 53.
    Collier, C.P., Wong, E.W., Belohradsk, M., Raymo, F.M., Stoddart, J.F., Kuekes, P.J., Williams, R.S., and Heath, J.R., Science, 1999, vol. 285, no. 5426, p. 391. doi 10.1126/science.285. 5426.391CrossRefGoogle Scholar
  54. 54.
    Collier, C.P., Mattersteig, G., Wong, E.W., Luo, Y., Beverly, K., Sampaio, J., Raymo, F.M., Stoddart, J.F., and Heath, J.R., Science, 2000, vol. 289, no. 5482, p. 1172. doi 10.1126/science.289. 5482.1172CrossRefGoogle Scholar
  55. 55.
    Collier, C.P., Jeppesen, J.O., Luo, Y., Perkins, J., Wong, E.W., Heath, J.R., and Stoddart, J.F., J. Am. Chem. Soc., 2001, vol. 123, no. 50, p. 12632. doi 10.1021/ja0114456CrossRefGoogle Scholar
  56. 56.
    Green, J.E., Wook Choi, J., Boukai, A., Bunimovich, Y., Johnston-Halperin, E., DeIonno, E., Luo, Y., Sheriff, B.A., Xu, K., Shik Shin, Y., Tseng, H.R., Stoddart, J.F., and Heath, J.R., Nature, 2007, vol. 445, no. 7126, p. 414. doi 10.1038/nature05462CrossRefGoogle Scholar
  57. 57.
    Balzani, V., Clemente-Len, M., Credi, A., Ferrer, B., Venturi, M., Flood, A.H., and Stoddart, J.F., Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 5, p. 1178. doi 10.1073/pnas.0509011103CrossRefGoogle Scholar
  58. 58.
    Mislow, K., Chemtracts: Org. Chem., 1989, vol. 2, p. 151.Google Scholar
  59. 59.
    Akkerman, O.S. and Coops, J., Recl. Trav. Chim. Pays–Bas, 1967, vol. 86, p. 755. doi 10.1002/recl.19670860711CrossRefGoogle Scholar
  60. 60.
    Akkerman, O.S., Recl. Trav. Chim. Pays–Bas., 1970, vol. 89, p. 673. doi 10.1002/recl.19700890702CrossRefGoogle Scholar
  61. 61.
    Weissensteiner, W., Scharf, J., and Schlogl, K., J. Org. Chem., 1987, vol. 52, p. 1210. doi 10.1021/jo00383a006CrossRefGoogle Scholar
  62. 62.
    Biali, S.E., Nugiel, D.A., and Rappoport, Z., J. Am. Chem. Soc., 1989, vol. 111, p. 846. doi 10.1021/ja00185a010CrossRefGoogle Scholar
  63. 63.
    Bergman, J.J. and Chandler, W.D., Can. J. Chem., 1972, vol. 50, p. 353. doi 10.1139/v72-053CrossRefGoogle Scholar
  64. 64.
    Kwart, H. and Alekman, S., J. Am. Chem. Soc., 1968, vol. 90, p. 4482. doi 10.1021/ja01018a065CrossRefGoogle Scholar
  65. 65.
    Kawada, Y., Ishikawa, J., Yamazaki, H., Koga, G., Murata, S., and Iwamura, H., Tetrahedron Lett., 1987, vol. 28, p. 445. doi 10.1016/S0040-4039(00)95752-6CrossRefGoogle Scholar
  66. 66.
    Iwamura, H. and Mislow, K., Acc. Chem. Res., 1988, vol. 21, p. 175. doi 10.1021/ar00148a007CrossRefGoogle Scholar
  67. 67.
    Clayden, J., Pink, J.H., and Yasin, S.A., Tetrahedron Lett., 1998, vol. 39, p. 105. doi 10.1016/S0040-4039 (97)10443-9CrossRefGoogle Scholar
  68. 68.
    Clayden, J. and Pink, J.H., Angew. Chem., 1998, vol. 110, p. 2040. doi 10.1002/(SICI)1521-3757(19980703) 110:13/14<2040:: AID-ANGE2040>3.0.CO;2-YCrossRefGoogle Scholar
  69. 69.
    Cozzi, F., Guenzi, A., Johnson, C.A., Mislow, K., Hounshell, W.D., and Blount, J.F., J. Am. Chem. Soc., 1981, vol. 103, p. 957. doi 10.1021/ja00394a048CrossRefGoogle Scholar
  70. 70.
    Koumura, N., Zijlstra, R.W., van Delden, R.A., Harada, N., and Feringa, B.L., Nature, 1999, vol. 401, no. 6749, p. 152. doi 10.1038/43646CrossRefGoogle Scholar
  71. 71.
    Vachon, J., Carroll, G.T., Pollard, M.M., Mes, E.M., Brouwer, A.M., and Feringa, B.L., Photochem. Photobiol. Sci., 2014, vol. 13, p. 241. doi 10.1039/c3pp50208bCrossRefGoogle Scholar
  72. 72.
    Van Delden, R.A., ter Wiel, M.K., Pollard, M.M., Vicario, J., Koumura, N., and Feringa, B.L., Nature, 2005, vol. 437, no. 7063, p. 1337. doi 10.1038/nature04127CrossRefGoogle Scholar
  73. 73.
    Eelkema, R., Pollard, M.M., Vicario, J., Katsonis, N., Ramon, B.S., Bastiaansen, C.W.M., Broer, D.J., and Feringa, B.L., Nature, 2006, vol. 440, no. 7081, p. 163. doi 10.1038/440163aCrossRefGoogle Scholar
  74. 74.
    Fletcher, S.P., Dumur, F., Pollard, M.M., and Feringa, B.L., Science, 2005, vol. 310, no. 5745, p. 80. doi 10.1126/science.1117090CrossRefGoogle Scholar
  75. 75.
    Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., and Feringa, B.L., Nat. Chem., 2011, vol. 3, p. 53. doi 10.1038/nchem. 872CrossRefGoogle Scholar
  76. 76.
    Shirai, Y., Osgood, A.J., Zhao, Y.M., Kelly, K.F., and Tour, J.M., Nano Lett., 2005, vol. 5, no. 11, p. 2330. doi 10.1021/nl051915kCrossRefGoogle Scholar
  77. 77.
    Morin, J.-F., Shirai, Y., and Tour, J.M., Org. Lett., 2006, vol. 8, no. 8, p. 1713. doi 10.1021/ol060445dCrossRefGoogle Scholar
  78. 78.
    Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.-H., and Feringa, B.L., Nature, 2011, vol. 479, no. 7372, p. 208. doi 10.1038/nature 10587CrossRefGoogle Scholar
  79. 79.
    Macrocyclic and Supramolecular Chemistry, Izatt, R.M., Ed., Chichester: Wiley, 2016. doi 10.1002/9781119053859.ch1Google Scholar
  80. 80.
    Peplow, M., Nature, 2015, vol. 525, p. 18. doi 10.1038/525018a.CrossRefGoogle Scholar
  81. 81.
    Balzani, V., Credi, A., and Venturi, M., Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld, Weinheim: Wiley-VCH, 2008. doi 10.1002/9783527621682CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Lukov
    • 1
  • I. N. Shcherbakov
    • 1
  • S. I. Levchenkov
    • 1
    • 2
  • Yu. P. Tupolova
    • 1
  • L. D. Popov
    • 1
  • I. V. Pankov
    • 1
  • S. V. Posokhova
    • 3
  1. 1.Sothern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scintific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Azovo-Chernomorsk Engineering InstituteDon State Agrarian UniversityZernogradRussia

Personalised recommendations