The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides


Heat treatment of coprecipitated hydroxides in air has afforded isometric nanocrystals of rhombic yttrium, lanthanum, and gadolinium ferrites with average crystallite size 40±4 nm. It has been stated that the formation of XFeO3 (X = Y, La, Gd) nanocrystals occurs via two mechanisms, from the corresponding coprecipitated hydroxide (main route) and from the products of partial carbonatization of the precursor (side route). It has been shown that the formation of XFeO3 (X = Y, La, Gd) nanocrystals via the main and the side routes occurs at 500 and 780°С (o-YFeO3), 646 and 900°С (o-LaFeO3), and at 769°С (o-GdFeO3). Basing on the obtained data, we have suggested a scheme of chemical and physical transformations accompanying the formation of nanocrystals of yttrium, lanthanum, and gadolinium ferrites.

This is a preview of subscription content, log in to check access.


  1. 1.

    Nguyen, A.T., Almjasheva, O.V., Mittova, I.Ya., Stognei, O.V., and Soldatenko, S.A., Inorg. Mater., 2009, vol. 45, no. 11, p. 1304. doi 10.1134/S0020168509110211

    CAS  Article  Google Scholar 

  2. 2.

    Komlev, A.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 11, p. 2222. doi 10.1134/S1070363211110028

    CAS  Article  Google Scholar 

  3. 3.

    Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 5, p. 696.

    CAS  Google Scholar 

  4. 4.

    Tugova, E.A. and Karpov, O.N., Nanosystems: Physics, Chemistry, Mathematics, 2014, vol. 5, no. 6, p. 854.

    Google Scholar 

  5. 5.

    Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 6, p. 1370. doi 10.1134/S107036321506002X

    CAS  Article  Google Scholar 

  6. 6.

    Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 6, p. 1031. doi 10.17586/2220-8054-2016-7-6-1031-1049

    Google Scholar 

  7. 7.

    Chithralekha, P., Murugeswari, C., Ramachandran, K., and Srinivasan, R., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 3, p. 558. doi 10.17586/2220-8054-2016-7-3-558-560

    Google Scholar 

  8. 8.

    Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., Izotova, S.G., and Gusarov, V.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, p. 1193. doi 10.1134/S0036023615100162.

    CAS  Article  Google Scholar 

  9. 9.

    Phu, N.D., Ngo, D.T., Hoang, L.H., Luong, N.H., Chau, N., and Hai, N.H., J. Phys. (D), 2011, vol. 44, no. 34, p. 345002. doi 10.1088/0022-3727/44/34/345002

    Google Scholar 

  10. 10.

    Hussein, G.A.M., Thermochim. Acta, 1994, vol. 244, p. 139. doi 10.1016/0040-6031(94)80214-9

    CAS  Article  Google Scholar 

  11. 11.

    Aghazadeh, M., Nozad, A., Adelkhani, H., and Ghaemi, M., ISRN Ceram., 2011, vol. 2011, p. 1. doi 10.1149/1.3469574

    Article  Google Scholar 

  12. 12.

    Chang, H.-Y., Chen, F.-S., and Lu, C.-H., J. Alloys Compd., 2011, vol. 509, no. 41, p. 10014. doi 10.1016/j.jallcom.2011.08.013

    CAS  Article  Google Scholar 

  13. 13.

    Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Filho, W.L.M., and Berquo, T.S., Chem. Mater., 2004, vol. 16, no. 10, p. 1906. doi 10.1021/cm0311729

    CAS  Article  Google Scholar 

  14. 14.

    Bernal, S., Diaz, J.A., Garcia, R., and Rodriguez-Izquierdo, J.M., J. Mater. Sci., 1985, vol. 20, no. 2, p. 537. doi 10.1007/BF01026524

    CAS  Article  Google Scholar 

  15. 15.

    Yamamoto, O., Takeda, Y., Kanno, R., and Fushimi, M., Solid State Ionics, 1985, vol. 17, p. 107. doi 10.1016/0167-2738(85)90057-8

    CAS  Article  Google Scholar 

  16. 16.

    Jeevanandam, P., Koltypin, Yu., Palchik, O., and Gedanken, A., J. Mater. Chem., 2001, vol. 11, p. 869. doi 10.1039/b007370i

    CAS  Article  Google Scholar 

  17. 17.

    Nguen, A.T., Mittova, I.Ya., and Al’myasheva, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 11, p. 1915. doi 10.1134/S1070427209110020

    CAS  Article  Google Scholar 

  18. 18.

    Sorescu, M., Xu, T., and Hannan, A., Am. J. Mater. Sci., 2011, vol. 1, no. 1, p. 57. doi 10.5923/j.materials.20110101.09

    Google Scholar 

  19. 19.

    Kaneko, H., Saito, Y., Umeda, M., and Nagai, K., Nippon Kagaku Kaishi, 1977, vol. 2, no. 6, p. 798. doi 10.1246/nikkashi.1977. 798

    Article  Google Scholar 

  20. 20.

    Li, L., Wang, X., Lan, Y., Gu, W., and Zhang, S., Ind. Eng. Chem. Res., 2013, vol. 52, no. 26, p. 9130. doi 10.1021/ie400940g

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. I. Popkov.

Additional information

Original Russian Text © V.I. Popkov, E.A. Tugova, A.K. Bachina, O.V. Almyasheva, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 11, pp. 1771–1780.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popkov, V.I., Tugova, E.A., Bachina, A.K. et al. The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides. Russ J Gen Chem 87, 2516–2524 (2017).

Download citation


  • coprecipitation
  • ferrite
  • nanocrystal
  • heat treatment
  • phase formation