Russian Journal of General Chemistry

, Volume 87, Issue 11, pp 2516–2524 | Cite as

The formation of nanocrystalline orthoferrites of rare-earth elements XFeO3 (X = Y, La, Gd) via heat treatment of coprecipitated hydroxides

  • V. I. Popkov
  • E. A. Tugova
  • A. K. Bachina
  • O. V. Almyasheva
Article
  • 20 Downloads

Abstract

Heat treatment of coprecipitated hydroxides in air has afforded isometric nanocrystals of rhombic yttrium, lanthanum, and gadolinium ferrites with average crystallite size 40±4 nm. It has been stated that the formation of XFeO3 (X = Y, La, Gd) nanocrystals occurs via two mechanisms, from the corresponding coprecipitated hydroxide (main route) and from the products of partial carbonatization of the precursor (side route). It has been shown that the formation of XFeO3 (X = Y, La, Gd) nanocrystals via the main and the side routes occurs at 500 and 780°С (o-YFeO3), 646 and 900°С (o-LaFeO3), and at 769°С (o-GdFeO3). Basing on the obtained data, we have suggested a scheme of chemical and physical transformations accompanying the formation of nanocrystals of yttrium, lanthanum, and gadolinium ferrites.

Keywords

coprecipitation ferrite nanocrystal heat treatment phase formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nguyen, A.T., Almjasheva, O.V., Mittova, I.Ya., Stognei, O.V., and Soldatenko, S.A., Inorg. Mater., 2009, vol. 45, no. 11, p. 1304. doi 10.1134/S0020168509110211CrossRefGoogle Scholar
  2. 2.
    Komlev, A.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2011, vol. 81, no. 11, p. 2222. doi 10.1134/S1070363211110028CrossRefGoogle Scholar
  3. 3.
    Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 5, p. 696.Google Scholar
  4. 4.
    Tugova, E.A. and Karpov, O.N., Nanosystems: Physics, Chemistry, Mathematics, 2014, vol. 5, no. 6, p. 854.Google Scholar
  5. 5.
    Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2015, vol. 85, no. 6, p. 1370. doi 10.1134/S107036321506002XCrossRefGoogle Scholar
  6. 6.
    Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 6, p. 1031. doi 10.17586/2220-8054-2016-7-6-1031-1049Google Scholar
  7. 7.
    Chithralekha, P., Murugeswari, C., Ramachandran, K., and Srinivasan, R., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 3, p. 558. doi 10.17586/2220-8054-2016-7-3-558-560Google Scholar
  8. 8.
    Popkov, V.I., Almjasheva, O.V., Schmidt, M.P., Izotova, S.G., and Gusarov, V.V., Russ. J. Inorg. Chem., 2015, vol. 60, no. 10, p. 1193. doi 10.1134/S0036023615100162.CrossRefGoogle Scholar
  9. 9.
    Phu, N.D., Ngo, D.T., Hoang, L.H., Luong, N.H., Chau, N., and Hai, N.H., J. Phys. (D), 2011, vol. 44, no. 34, p. 345002. doi 10.1088/0022-3727/44/34/345002Google Scholar
  10. 10.
    Hussein, G.A.M., Thermochim. Acta, 1994, vol. 244, p. 139. doi 10.1016/0040-6031(94)80214-9CrossRefGoogle Scholar
  11. 11.
    Aghazadeh, M., Nozad, A., Adelkhani, H., and Ghaemi, M., ISRN Ceram., 2011, vol. 2011, p. 1. doi 10.1149/1.3469574CrossRefGoogle Scholar
  12. 12.
    Chang, H.-Y., Chen, F.-S., and Lu, C.-H., J. Alloys Compd., 2011, vol. 509, no. 41, p. 10014. doi 10.1016/j.jallcom.2011.08.013CrossRefGoogle Scholar
  13. 13.
    Mathur, S., Veith, M., Rapalaviciute, R., Shen, H., Goya, G.F., Filho, W.L.M., and Berquo, T.S., Chem. Mater., 2004, vol. 16, no. 10, p. 1906. doi 10.1021/cm0311729CrossRefGoogle Scholar
  14. 14.
    Bernal, S., Diaz, J.A., Garcia, R., and Rodriguez-Izquierdo, J.M., J. Mater. Sci., 1985, vol. 20, no. 2, p. 537. doi 10.1007/BF01026524CrossRefGoogle Scholar
  15. 15.
    Yamamoto, O., Takeda, Y., Kanno, R., and Fushimi, M., Solid State Ionics, 1985, vol. 17, p. 107. doi 10.1016/0167-2738(85)90057-8CrossRefGoogle Scholar
  16. 16.
    Jeevanandam, P., Koltypin, Yu., Palchik, O., and Gedanken, A., J. Mater. Chem., 2001, vol. 11, p. 869. doi 10.1039/b007370iCrossRefGoogle Scholar
  17. 17.
    Nguen, A.T., Mittova, I.Ya., and Al’myasheva, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 11, p. 1915. doi 10.1134/S1070427209110020CrossRefGoogle Scholar
  18. 18.
    Sorescu, M., Xu, T., and Hannan, A., Am. J. Mater. Sci., 2011, vol. 1, no. 1, p. 57. doi 10.5923/j.materials.20110101.09Google Scholar
  19. 19.
    Kaneko, H., Saito, Y., Umeda, M., and Nagai, K., Nippon Kagaku Kaishi, 1977, vol. 2, no. 6, p. 798. doi 10.1246/nikkashi.1977. 798CrossRefGoogle Scholar
  20. 20.
    Li, L., Wang, X., Lan, Y., Gu, W., and Zhang, S., Ind. Eng. Chem. Res., 2013, vol. 52, no. 26, p. 9130. doi 10.1021/ie400940gCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. I. Popkov
    • 1
    • 2
  • E. A. Tugova
    • 1
    • 2
  • A. K. Bachina
    • 1
    • 2
  • O. V. Almyasheva
    • 1
    • 3
  1. 1.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia
  3. 3.St. Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations