Formation of nanocrystalline BiFeO3 under hydrothermal conditions

Abstract

The formation of bismuth orthoferrite under hydrothermal conditions at temperature 160, 180, or 200°С and pressure 100 MPa in aqueous solution of potassium hydroxide has been studied. The determined composition and structure of polycrystalline phase with sillenite structure have evidenced its formation at the interface of the crystallites of amorphous iron oxide. It has been shown that the formation of polycrystalline round-shaped BiFeO3 particles with size about 20 μm occurs via aggregation of perovskite-type phase crystallites (38–70 nm). Pycnometric density of BiFeO3 and the amorphous phase has been determined, and Mossbauer spectra reflecting the state of iron in the phases coexisting during the formation of BiFeO3 have been analyzed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., and Damjanovic, D., J. Am. Ceram. Soc., 2014, vol. 97, no. 7, p. 1993. doi 10.1111/jace.12982

    CAS  Article  Google Scholar 

  2. 2.

    Lin, Z., Cai, W., Jiang, W., Fu Ch., Li Ch., and Song, Y., Ceram. Intern., 2013, vol. 39, p. 8729. doi 10.1016/j.ceramint.2013.04.058

    CAS  Article  Google Scholar 

  3. 3.

    Selbach, S.M., Tybell, T., Einarsrud, M.A., and Grande, T., Chem. Mat., 2007, vol. 19, p. 6478. doi 10.1016/j.jssc.2010.03.014

    CAS  Article  Google Scholar 

  4. 4.

    Shirokov, V.B. Golovko, Yu.I., and Mukhortov, V.M., Techn. Phys., 2014, vol. 59, no. 1, p. 102. doi 10.1134/S1063784214010174

    CAS  Article  Google Scholar 

  5. 5.

    Dziubaniuka, M., Bujakiewicz-Koronska, R., Suchanicz, J., Wyrwaa, J., and Rekas, M., Sensors and Actuators (B), 2013, vol. 188, p. 957. doi 10.1016/j.snb.2013.08.020

    Article  Google Scholar 

  6. 6.

    Golić, D.L., Radojković, A., Ćirković, J., Dapčević, A., Pajić, D., Tasić, N., Savić, S.M., Počuča-Nešić, M., Marković, S., Branković, G., Stanojević, Z.M., and Branković, Z., J. Eur. Ceram. Soc., 2016, vol. 36, no. 7, p. 1623. doi 10.1016/j.jeurceramsoc.2016.01.031

    Article  Google Scholar 

  7. 7.

    Srivastav, S.K., Johari, A., Patel, S.K.S., and Gajbhiye, N.S., J. Magn. Magn. Mater., 2017, vol. 441, p. 503. doi 10.1016/j.jmmm.2017.06.025

    CAS  Article  Google Scholar 

  8. 8.

    Hengky Ch., Moya, X., Mathurc, N.D., and Dunn, S., RSC Adv., 2012, vol. 2, p. 11843. doi 10.1039/c2ra22211f

    CAS  Article  Google Scholar 

  9. 9.

    Du, Y., Cheng, Z.X., Dou, S.X., Attard, D.J., and Wang, X.L., J. Appl. Phys., 2011, vol. 109, p. 073903. doi 10.1063/1.3561377

    Article  Google Scholar 

  10. 10.

    Ortiz-Quinones, J.L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, p. 10306. doi 10.1021/ic400627c

    Article  Google Scholar 

  11. 11.

    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70

    CAS  Article  Google Scholar 

  12. 12.

    Liu, T., Xu, Y., and Zhao, J., J. Am. Ceram. Soc., 2010, vol. 93, no. 11, p. 3637. doi 10.1111/j.1551-2916.2010.03945.x

    CAS  Article  Google Scholar 

  13. 13.

    Feroze, A., Idrees, M., Kim, D.-K., Nadeem, M., Siddiqi, S.A., Shaukat, S.F., Atif, M., and Siddique, M., J. Electron. Mater., 2017. doi 10.1007/s11664-017-5463-3

    Google Scholar 

  14. 14.

    Selbach, S.M., Einarsrud, M., Tybell, T., and Grande, T., J. Am. Ceram. Soc., 2007, vol. 90, no. 11, p. 3430. doi 10.1111/j.1551-2916.2007.01937.x

    CAS  Article  Google Scholar 

  15. 15.

    Chen, J., Xing, X., Watson, A., Wang, W., Yu, R., Deng, J., Yan, L., Sun, C., and Chen, X., Chem. Mater., 2006, vol. 19, no. 15, p. 3598. doi 10.1021/cm070790c

    Article  Google Scholar 

  16. 16.

    Kothai, V. and Rajeev, R., Bull. Mat. Sci., 2012, vol. 35, no. 2, p. 157. doi 10.1007/s12034-012-0266-x

    CAS  Article  Google Scholar 

  17. 17.

    Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V., and Gusarov, V.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 10, p. 2256. doi 10.1134/S1070363216100030

    CAS  Article  Google Scholar 

  18. 18.

    Suresh, P. and Srinath, S., J. Alloys Compd., 2015, vol. 649, p. 843. doi 10.1016/j.jallcom.2015.07.152

    CAS  Article  Google Scholar 

  19. 19.

    Sakar, M., Balakumar, S., Saravanan, P., and Jaisankar, S., Mater. Res. Bull., 2013, vol. 48, no. 8, p. 2878. doi 10.1016/j.materresbull.2013.04.008

    CAS  Article  Google Scholar 

  20. 20.

    Wei, J. and Xue, D., Mater. Res. Bull., 2008, vol. 43, p. 3368. doi 10.1016/j.materresbull.2008.02.009

    CAS  Article  Google Scholar 

  21. 21.

    Chaudhuri, A., Mitra, S., Mandal, M., and Mandal, K., J. Alloys Compd., 2010, vol. 491, p. 703. doi 10.1016/j.jallcom.2009. 11.049

    CAS  Article  Google Scholar 

  22. 22.

    Zhang, Q., Sando, D., and Nagarajan, V., J. Mater. Chem. (C), 2016, vol. 4, p. 4092. doi 10.1039/C6TC00243A

    CAS  Article  Google Scholar 

  23. 23.

    Zou, J., Gong, W., Ma, J., Li, L., and Jiang, J., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 1304. doi 10.1166/jnn.2015.9074

    CAS  Article  Google Scholar 

  24. 24.

    Guo, Y., Pu, Y., Cui, Y., Hui, C., Wan, J., and Cui, C., Mater. Lett., 2017, vol. 196, p. 57. doi 10.1016/j.matlet.2017.03.023

    CAS  Article  Google Scholar 

  25. 25.

    Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, p. 849. doi 10.1023/A:1020409702215

    CAS  Article  Google Scholar 

  26. 26.

    Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 6, p. 1031. doi 10.17586/2220-8054-2016-7-6-1031-1049

    Google Scholar 

  27. 27.

    Čebela, M., Janković, B., Hercigonja, R., Lukić, M.J., Dohčević-Mitrović, Z., Milivojević, D., and Matović, B., Proc. Appl. Ceram., 2016, vol. 10, no. 4, p. 201. doi 10.2298/PAC1604201C

    Article  Google Scholar 

  28. 28.

    Wang, X., Mao, W., Zhang, Q., Wang, Q., Zhu, Y., Zhang, J., Yang, T., Yang, J., Li, X., and Huang, W., J. Alloys Compd., 2016, vol. 677, p. 288. doi 10.1016/j.jallcom.2016.02.246

    CAS  Article  Google Scholar 

  29. 29.

    Niu, F., Gao, T., Zhang, N., Chen, Z., Huang, Q., Qin, L., Sun, X., and Huang, Y., J. Nanosci. Nanotechnol., 2015, vol. 15, p. 9693. doi 10.1166/jnn.2015.10682

    CAS  Article  Google Scholar 

  30. 30.

    Di, L.J., Yang, H., Xian, T., Li, R.S., Feng, Y.C., and Feng, W.J., Ceramics Int., 2014, vol. 40, no. 1, p. 4575. doi 10.1016/j.ceramint., 2013.08.134

    CAS  Article  Google Scholar 

  31. 31.

    Shun, L., Nechache, R., Davalos, I.A.V., Goupil, G., Nikolova, L., Nicklaus, M., Laverdiere, J., Ruediger, A., and Rosei, F., J. Am. Ceram. Soc., 2013, vol. 96, no. 10, p. 3155. doi 10.1111/jace. 12473

    Google Scholar 

  32. 32.

    Chybczynska, K., Blaszyk, M., Hilczer, B., Lucinski, T., Matczak, M., and Andrzejewski, B., Mater. Res. Bull., 2017, vol. 86, p. 178. doi 10.1016/j.materresbull.2016.10.024

    CAS  Article  Google Scholar 

  33. 33.

    Suzuki, K., Tokudome, Y., Tsuda, H., and Takahashi, M., J. Appl. Crystallogr., 2016, vol. 49, no. 1, p. 168. doi 10.1107/S1600576715023845

    CAS  Article  Google Scholar 

  34. 34.

    Xu, X., Xu, Q., Huang, Y., Hu, X., Huang, Y., Wang, G., Hun, X., and Zhuang, N., J. Crystal Growth., 2016, vol. 437, p. 42. doi 10.1016/j.jcrysgro.2015.12.015

    CAS  Article  Google Scholar 

  35. 35.

    Cao, W., Chen, Z., Gao, T., Zhou, D., Leng, X., Niu, F., Zhu, Y., Qin, L., Wang, J., and Huang, Y., Mater. Chem. Phys., 2016, vol. 175, p. 1. doi 10.1016/j.matchemphys.2016.02.067

    CAS  Article  Google Scholar 

  36. 36.

    Chen, Z. and Jin, W., J. Mater. Sci., 2014, vol. 25, no. 9, p. 4039. doi 10.1007/s10854-014-2126-5

    CAS  Google Scholar 

  37. 37.

    Jartych, E., Oleszak, D., and Mazurek, M., Przeglad Elektrotechniczny (Electrical Review), 2012, no. 9b, p. 242.

    Google Scholar 

  38. 38.

    Jartych, E., Lisinska-Czekaj, A., Oleszak, D., and Czekaj, D., Materials Science-Poland., 2013, vol. 31, no. 2, p. 211. doi 10.2478/s13536-012-0093-1

    CAS  Article  Google Scholar 

  39. 39.

    Flores Morales, S.S., León Flores, J.A., Pérez Mazariego, J.L., Marquina Fábrega, V., and Gómez González, R.W., Physica (B), 2017, vol. 504, p. 109. doi 10.1016/j.physb.2016.10.019

    CAS  Article  Google Scholar 

  40. 40.

    Gusarov, V.V., Egorov, F.K., Ekimov, S.P., and Suvorov, S.A., Zh. Fiz. Khim., 1987, vol. 61, no. 6, p. 1652.

    CAS  Google Scholar 

  41. 41.

    Gusarov, V.V., Malkov, A.A., Malygin, A.A., and Suvorov, S.A., Inorg. Mater., 1995, vol. 31, no. 3, p. 320.

    CAS  Google Scholar 

  42. 42.

    Ncube, M., Naidoo, D., Bharuth-Ram, K., Billing, D., Masenda, H., Sahu, D.R., Roul, B.K., and Erasmus, R.M., Hyperfine Interact., 2013, vol. 219, p. 83. doi 10.1007/s10751-012-0729-x

    CAS  Article  Google Scholar 

  43. 43.

    Santos, I.A., Grande, H.L.C., Freitas, V.F., de Medeiros, S.N., Paesano Jr, A., Cótica, L.F., and Radovanovic, E., J. Non-Cryst. Solids, 2006, vol. 352, p. 3721. doi 10.1016/j.jnoncrysol.2006.02.122

    CAS  Article  Google Scholar 

  44. 44.

    Vasconcelos, I.F., Pimenta, M.A., and Sombra, A.S.B., J. Mater. Sci., 2001, vol. 36, no. 3, p. 587. doi 10.1023/A:1004804000723

    CAS  Article  Google Scholar 

  45. 45.

    Musić, S., Czakó-Nagy, I., Popović, S., Vértes, A., and Tonković, M., Croat. Chem. Acta, 1986, vol. 59, no. 4, p. 833.

    Google Scholar 

  46. 46.

    Ivanov, V.K., Fedorov, P.P., Baranchikov, A.Y., and Osiko, V.V., Russ. Chem. Rev., 2014, vol. 83, no. 12, p. 1204. doi 10.1070/RCR4453

    CAS  Article  Google Scholar 

  47. 47.

    Rusakov, V.S. and Kadyrzhanov, K.K., Hyperfine Interact., 2005, vol. 164, p. 87. doi 10.1007/s10751-006-9236-2

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Proskurina.

Additional information

Original Russian Text © O.V. Proskurina, M.V. Tomkovich, A.K. Bachina, V.V. Sokolov, D.P. Danilovich, V.V. Panchuk, V.G. Semenov, V.V. Gusarov, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 11, pp. 1761–1770.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Proskurina, O.V., Tomkovich, M.V., Bachina, A.K. et al. Formation of nanocrystalline BiFeO3 under hydrothermal conditions. Russ J Gen Chem 87, 2507–2515 (2017). https://doi.org/10.1134/S1070363217110019

Download citation

Keywords

  • bismuth ferrite
  • hydrothermal synthesis
  • Mössbauer spectroscopy
  • phase formation mechanism