Skip to main content
Log in

Synthesis of new macrocyclic complexes of transition metals: Structural characterization and biological activity

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Condensation reaction between benzildihydrazone and pyridine 2,3-dicarboxylic acid, pyridine 3,4-dicarboxylic acid or pyridine 2,4-dicarboxylic acid in methanol led to novel Schiff base macrocyclic ligands L1, L2, and L3 respectively. Metal complexes of the type [MLCl2], [M = Co(II), Ni(II)], were synthesized by the reaction of a free macrocyclic ligand (L) with the corresponding metal salts in a 1 : 1 molar ratio. The complexes were characterized on the basis of analytical data, molar conductivity and magnetic susceptibility measurements, IR, 1H, and 13C NMR, and electronic spectral data. Those demonstrated that all the complexes had octahedral arrangement around the metal ions. The ligand and its complexes were screened for their antibacterial, antifungal and DNA cleavage activities. The studies demonstrate that the complexes possessed antimicrobial and DNA cleavage activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, D.P., Kamboj, M., Kumar, K., Jain, K., Sharma, C., and Aneja, K.R., Russ. J. Inorg. Chem., 2011, vol. 56, p. 1396. doi 10.1134/S0036023611090282

    Article  CAS  Google Scholar 

  2. Layer, G., Reichelt, J., Jahn, D., and Heinz, D.W., Protein Sci., 2010, vol. 19, no. 6, p. 1137. doi 10.1002/pro.405

    Article  CAS  Google Scholar 

  3. Anbu, S., Kandaswamy, M., Suthakaran, P., Murugan, V., and Varghese, B., J. Inorg. Biochem., 2009, vol. 103, no. 3, p. 401. doi 10.1016/j.jinorgbio.2008.12.013

    Article  CAS  Google Scholar 

  4. Reddy, P.M., Rohini, R., Krishna E.R., Hu, A., and Vadde, R., Int. J. Mol. Sci., 2012, vol. 13, p. 4982. doi 10.3390/ijms13044982

    Article  CAS  Google Scholar 

  5. Melsen, G.A., Coordination Chemistry of Macrocyclic Compound, New York: Plenum Press, 1979, vol. 28, p. 407. doi 10.1002/nadc.19800280614

    Google Scholar 

  6. Lindoy, L.F., The Chemistry of Macrocyclic Ligand Complexes, Cambridge Cambridge University Press, 1989. 10.1002/jctb.280470409

    Book  Google Scholar 

  7. Kathryn, L.H. and Katherine, J., Franz. Chem. Rev., 2009, vol. 109, no. 10, p. 4921. doi 10.1021/cr900134a

    Article  Google Scholar 

  8. Haas, K.L. and Franz, K.J., Chem. Rev., 2009, vol. 109, no. 10, p. 4921. doi 10.1021/cr900134a

    Article  CAS  Google Scholar 

  9. Chaudhary, A. and Rawat, E., Int. J. Inorg. Chem. 2014, ID 509151. doi org/10.1155/2014/509151

    Google Scholar 

  10. Koike, T., Watanabe, T., Aoki, S., Kimura, E., and Shiro, M., J. Am. Chem. Soc., 1996, vol. 118, no. 50, p. 12696. doi 10.1021/ja962527a

    Article  CAS  Google Scholar 

  11. Shionoya, M., Ikeda, T., Kimura, E., and Shiro, M., J. Am. Chem. Soc., 1994, vol. 116, no. 9, p. 3848. doi 10.1021/ja00088a021

    Article  CAS  Google Scholar 

  12. Shiekh, R.A., Rahman, I.A., Malik, M.A., Luddin, N., Masudi, S.M., and Thabaiti, S.A., Int. J. Electrochem. Sci., 2013, vol. 8, no. 5, p. 6972.

    CAS  Google Scholar 

  13. Sengupta, P., Dinda, R., Ghosh, S., and Sheldrick, W.S., Polyhedron, 2003, vol. 22, no. 2, p. 477.

    Google Scholar 

  14. Fenton, R.R., Gauci, R., Junk, P.C., Lindoy, L.F., Luckay, R.C., Meehan, G.V., Price, J.R., Tumer, P., and Wei, G., J. Chem. Soc., Dalton Trans., 2002, p. 2185. doi 10.1039/B201195F

    Google Scholar 

  15. Yoder, J.S., Cesario, S., Plotkin, V., Kelly, X., Shannon, K., and Dworkin, M.S., Clin. Infect. Dis., 2006, vol. 42, no. 11, p. 1513. doi org/10.1086/503842

    Article  Google Scholar 

  16. Bajju, G.D., Sharma, P., Kapahi, A., Bhagat, M., Kundan, S., and Gupta, D., J. Inorg. Chem., 2013, vol. 2013, ID 982965. doi org/10.1155/2013/982965

    Google Scholar 

  17. Chandra, S. and Pundir, M., Spectrochim. Acta, A, 2008, vol. 69, no. 1, p. 1. doi 10.1016/j.saa.2007.02.019

    Article  Google Scholar 

  18. Khan, T.A., Hasan, S.S., Mohamed, A.K., Islam, K.S., and Shakir, M., Synth. React. Met.-Org. Chem., 2000, vol. 5, p. 815. J-GLOBAL ID: 200902132974974539.

    Article  Google Scholar 

  19. Amaladasan, M., Victor, P., and Arockiadoss, Int. J. Chem. Tech. Res., 2012, vol. 4, no. 4, p. 1114.

    CAS  Google Scholar 

  20. Kumar, R., Masih, I., and Fahmi, N., Spectrochim. Acta, A, 2013, vol. 101, p. 100. doi org/10.1016/j.saa.2012.09.029

    Article  CAS  Google Scholar 

  21. Shakir, M. and Varkey, S.P., Polyhedron, 1995, vol. 14, p. 1117.

    Article  CAS  Google Scholar 

  22. Chandra, S. and Gupta L.K., Spectrochim. Acta, A, 2005, vol. 62, p. 1102. doi 10.1016/j.saa.2005.04.007

    Article  Google Scholar 

  23. Zafar, H., Kareem, A., Sherwani, A., Mohammad, O., Ansari, A.M., Khan, H.M., and Khan, T.A., J. Photochem. Photobiol. B, 2015, vol. 142, p. 8. doi org/10.1016/j.jphotobiol.2014.10.004

    Article  CAS  Google Scholar 

  24. Udayagiri, M.D., Yernale, N.G., Mathada, B.H., and Swamy, M., Int. J. Pharm. Pharm. Sci., 2016, vol. 8, no. 3, p. 344.

    CAS  Google Scholar 

  25. Chandra, S.m and Gupta, L., Spectrochim. Acta, A, 2004, vol. 60, p. 1563. doi 10.1016/j.saa.2003.08.023

    Article  Google Scholar 

  26. Agarwal, R.K., Sharma, D., Singh, L., and Agarwal, H., Bioinorg. Chem. Appl., 2006, vol. 2006, p. 1. ID 29234, doi 10.1155/BCA/2006/29234

    Google Scholar 

  27. Cotton, F.A., Williknson, G., Murillo, C.A., and Bochman, M., Advanced Inorganic Chemistry, New York: Wiley, 2003, 6 ed.

    Google Scholar 

  28. Raman, N., Kulandaisamy, A., Jayasubramanian, K., Polish. J. Chem., 2002, vol. 76, no. 8, p. 1085.

    CAS  Google Scholar 

  29. Gao, E.J., Zhang, Y., Lin, L., Wang, R.S., Dai, L., Liang, Q., Zhu, M.C., Wang, M.L., Wen-Xuan He, L.L., and Zhang, Y., Chem. Mater. Sci., 2006, vol. 60, p. 214.

    Google Scholar 

  30. Kapoor, P., Singh, R.V., and Fahmi, N., J. Coord. Chem., 2012, vol. 65, no. 2, p. 262. doi 10.1080/00958972.2011.649265

    Article  CAS  Google Scholar 

  31. Vogel, A.I., A Textbook of Organic Quantitative Analysis, London: Longman Publication, 2004, 5 ed.

    Google Scholar 

  32. Vogel, A.I., A Text Book of Quantitative Inorganic Analysis, London: Longman Publication, 1961, 3 ed. doi 10.1002/ange.19620741645

    Google Scholar 

  33. Raman, N., Raja, J.D., Sakthivel, A., J. Chem. Sci., 2007, vol. 119, no. 4, p. 303.

    Article  CAS  Google Scholar 

  34. Zahid, H., Chohan, M., and Arif, M.S., Appl. Organomet. Chem., 2007, vol. 21, no. 4, p. 294. doi 10.1002/aoc.1200

    Article  Google Scholar 

  35. Arish, D. and Nair, M.S., J. Coord. Chem., 2010, vol. 63, p. 1619. doi org/10.1080/00958972. 2010.483729

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Soni.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, K., Singh, R.V. & Fahmi, N. Synthesis of new macrocyclic complexes of transition metals: Structural characterization and biological activity. Russ J Gen Chem 87, 1610–1617 (2017). https://doi.org/10.1134/S107036321707026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321707026X

Keywords

Navigation