Skip to main content
Log in

Thermal reduction of graphite oxide derivatives for preparation of supports for platinum hydrogenation catalysts

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Thermal reduction of graphite oxide and its derivatives under argon atmosphere has been studied by means of thermogravimetric analysis. Carbon materials prepared via thermal reduction of graphite oxide derivatives in argon at 900°С during 3 h have been used for deposition of platinum from H2PtCl6 solutions. Pt particles supported on the support catalyze liquid-phase hydrogenation of nitrobenzene and dec-1-ene under atmospheric pressure of H2. Thermal reduction of the supports based on graphite oxide results in the formation of the structural defects significantly enhancing the catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chepaikin, E.G. and Khidekel’, M.L., J. Mol. Catal., 1978, vol. 4, p. 103. doi 10.1016/0304-5102(78)80003-0

    Article  CAS  Google Scholar 

  2. Kushch, S.D., Kuyunko, N.S., and Tarasov, B.P., Kinet. Catal., 2009, vol. 50, no. 6, p. 860. doi 10.1134/s0023158409060093

    Article  CAS  Google Scholar 

  3. Kushch, S.D., Kuyunko, N.S., and Tarasov, B.P., Russ. J. Gen. Chem., 2009, vol. 79, no. 4, p. 706. doi 10.1134/s1070363209040057

    Article  CAS  Google Scholar 

  4. Machado, B.F. and Serp, P., Catal. Sci. Technol., 2012, vol. 2, no. 1, p. 54. doi 10.1039/c1cy00361e

    Article  CAS  Google Scholar 

  5. Yu, J.-G., Yu, L.-Yan, Yang, H., Liu Qi, Chen, X.-H., Jiang, X.-Yu, Chen, X.-Q., and Jiao, F.-P., Sci. Total Envir., 2015, vol. 502, p. 70. doi 10.1016/j.scitotenv.2014.08.077

    Article  CAS  Google Scholar 

  6. Ju, H.-Mi, Huh, S.H., Choi, S.-Ho, and Le, H.-Lim., Mater. Lett., 2010, vol. 64, no. 3, p. 357. doi 10.1016/j.matlet.2009.11.016

    Article  CAS  Google Scholar 

  7. Kushch, S.D., Kuyunko, N.S., Muradian, V.E., and Tarasov, B.P., Russ. J. Phys. Chem. (A), 2013, vol. 87, no. 11, p. 1798. doi 10.1134/s0036024413100117

    Article  CAS  Google Scholar 

  8. Kushch, S.D., Kuyunko, N.S., Dremova, N.N., and Korshunova, L.A., Kinet. Catal., 2015, vol. 56, no. 5, p. 584. doi 10.1134/s0023158415050110

    Article  CAS  Google Scholar 

  9. Kushch, S.D., Kuyunko, N.S., Arbuzov, A.A., and Bondarenko, G.V., Kinet. Catal., 2015, vol. 56, no. 6, p. 818. doi 10.1134/s0023158415060075

    Article  CAS  Google Scholar 

  10. Arbuzov, A.A., Muradyan, V.E., and Tarasov, B.P., Russ. Chem. Bull., 2013, vol. 62, no. 9, p. 1962. doi 10.1007/s11172-013-0284-x

    Article  CAS  Google Scholar 

  11. Hummers, W.S., and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339. doi 10.1021/ja01539a017

    Article  CAS  Google Scholar 

  12. Schniepp, H.C., Li Je-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Prud’homme, R.K., Car, R., Saville, D.A., and Aksay, I.A., J. Phys. Chem. (B), 2006, vol. 110, no. 17, p. 8535. doi 10.1021/jp060936f

    Article  CAS  Google Scholar 

  13. McAllister, M.J., Li Je-L., Adamson, D.H., Schniepp, H.C., Abdala, A.A., Liu, J., Herrera-Alonso, M., Milius, D.L., Car, R., Prud’homme, R.K., and Aksay, I.A., Chem. Mater., 2007, vol. 19, no. 18, p. 4396. doi 10.1021/cm0630800

    Article  CAS  Google Scholar 

  14. You Sh., Luzan, S.M., Szab, T., and Talyzin, A.V., Carbon, 2013, vol. 52, p. 171. doi 10.1016/j.carbon.2012.09.018

    Article  CAS  Google Scholar 

  15. Botas, C., Álvarez, P., Blanco, P., Santamaría, R., Granda, M., Gutiérez, M.D., Rodríguez-Reinoso, F., and Menéndez, R., Carbon, 2013, vol. 52, p. 476. doi 10.1016/j.carbon.2012.09.059

    Article  CAS  Google Scholar 

  16. Ganguly, A., Sharma, S., Papakonstantinou, P., and Hamilton, J., J. Phys. Chem. (C), 2011, vol. 115, no. 34, p. 17009. doi 10.1021/jp203741y

    CAS  Google Scholar 

  17. Chen Ch.-M., Zhang, Q., Yang, M.-G., Huang Ch.-H., Yang, Y.-G., and Wang, M.-Zh., Carbon, 2012, vol. 50, no. 10, p. 3572. doi 10.1016/j.carbon.2012.03.029

    Article  CAS  Google Scholar 

  18. Liang, X., Wang Yu, Zheng, H., and Wu, Z., J. Electron Spectrosc., 2014, vol. 196, p. 89. doi 10.1016/j.elspec.2013.10.011

    Article  CAS  Google Scholar 

  19. Yin, K., Li, H., Xia, Y., Bi, H., Sun, Jun, Liu, Zh., and Sun, L., Nano-Micro Lett., 2011, vol. 3, no. 1, p. 51. doi 10.3786/nml.v3i1.p51-55

    Article  CAS  Google Scholar 

  20. Song, P., Zhang, X., Sun, M., Cui, X., and Lin, Y., RSC Adv., 2012, vol. 2, p. 1168. doi 10.1039/c1ra00934f

    Article  CAS  Google Scholar 

  21. Teng, X., Yan, M., and Bi, H., Spectrochim. Acta. (A), 2014, vol. 118, p. 1020. doi 10.1016/j.saa.2013.09.087

    Article  CAS  Google Scholar 

  22. Prasomsri, T., Shi, D., and Resasco, D.E., Chem. Phys. Lett., 2010, vol. 497, p. 103. doi 10.1016/j.cplett.2010.08.007

    Article  CAS  Google Scholar 

  23. Goncalves, G., Marques, P.A.A.P., Granadeiro, C.M., Nogueira, H.I.S., Singh, M.K., and Grácio, J., Chem. Mater., 2009, vol. 21, no. 20, p. 4796. doi 10.1021/cm901052s

    Article  CAS  Google Scholar 

  24. Tung, T.Th., Feller, J.-F., Kim, T.Y., Kim, H., Yang, W.S., and Suh, K.S., J. Polymer Sci. (A), 2012, vol. 50, no. 5, p. 927. doi 10.1002/pola.25847

    CAS  Google Scholar 

  25. Mohan, D., Singh, K.P., Sinha, S., and Gosh, D., Carbon, 2004, vol. 42, nos. 12–13, p. 2409. doi 10.1016/j.carbon.2004.04.026

    Article  CAS  Google Scholar 

  26. Voloshina, E.N., Mollenhauer, D., Chiappisi, L., and Paulus, B., Chem. Phys. Lett., 2010, vol. 510, nos. 4–6, p. 220. doi 10.1016/j.cplett.2011.05.025

    Article  Google Scholar 

  27. Zheng, J.-N., He, Li-Li, Chen, Ch., Wang, Ai-Jun, Ma, Ke-Fu, and Feng, Jiu-Ju, J. Power Sources, 2014, vol. 268, p. 744. doi 10.1016/j.jpowsour.2014.06.109

    Article  CAS  Google Scholar 

  28. Tong, Yu, Wang, Ch., Li, J., and Yang, Y., Hydrometallurgy, 2014, vols. 147–148, no. 6, p. 164. doi 10.1016/j.hydromet.2014.05.016

    Article  Google Scholar 

  29. Crosthwaite, J.M., Muldoon, M.J., Dixon, J.K., Anderson, J.L., and Brennecke, J.F., J. Chem. Thermodyn., 2005, vol. 37, p. 559. doi 10.1016/j.jct.2005.03.013

    Article  CAS  Google Scholar 

  30. Farooq, A., Reinert, L., Levque, J.-M., Papaiconomou, N., Irfan, N., and Duclaux, L., Micropor. Mesopor. Mater., 2012, vol. 158, p. 55. doi 10.1016/j.micromeso.2012.03.008

    Article  CAS  Google Scholar 

  31. Amine Kh., Mizuhata, M., Oguro, K., and Takenaka, H., J. Chem. Soc. Faraday Trans., 1995, vol. 91, no. 24, p. 4451. doi 10.1039/ft9959104451

    Article  CAS  Google Scholar 

  32. Voiry, D., Yang, J., Kupferberg, J., Fullon, R., Lee, C., Jeong Hu, Y., Shin, H. Suk, and Chhowalla, M., Nature, 2016, vol. 353, no. 6306, p. 1413. doi 10.1126/science.aah3398

    CAS  Google Scholar 

  33. Nie, R., Wang, J., Wang, L., Qin Yu, Chen, P., and Hou, Zh., Carbon, 2012, vol. 50, no. 2, p. 586. doi 10.1016/j.carbon.2011.09.017.

    Article  CAS  Google Scholar 

  34. Geng, D., Yang, S., Zhang, Y., Yang, J., Liu, J., Li, R., Sham, T.-K., Sun, X., Ye, S., and Knights, Sh., Appl. Surface Sci., 2011, vol. 257, no. 21, p. 9193. doi 10.1016/j.apsusc.2011.05.131

    Article  CAS  Google Scholar 

  35. Zhao, Y., Zhou, Y., O’Hayre, R., and Shao, Z., J. Phys. Chem. Solids, 2013, vol. 74, no. 11, p. 1608. doi 10.1016/j.jpcs.2013.06.004

    Article  CAS  Google Scholar 

  36. Tang, Y., Yang, Z., and Dai, X., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 48, p. 16566. doi 10.1039/c2cp41441d

    Article  CAS  Google Scholar 

  37. Bagotzky, V.S., Vassiliev, Yu.B., and Khazova, O.A., J. Electroanal. Chem., 1977, vol. 81, no. 2, p. 229. doi 10.1016/s0022-0728(77)80019-3

    Article  Google Scholar 

  38. Kushch, S.D., Izakovich, E.N., Khidekel’, M.L., and Strelets, V.V., Russ. Chem. Bull., 1981, vol. 30, no. 7, p. 1201. doi 10.1007/bf01417972

    Article  Google Scholar 

  39. Marquardt, D., Vollmer Ch., Thomann, R., Steurer, P., Mülhaupt, R., Redel, E., and Janiak, Ch., Carbon, 2011, vol. 49, no. 4, p. 1326. doi 10.1016/j.carbon.2010.09.066

    Article  CAS  Google Scholar 

  40. Esteban, R.M., Schütte, K., Brandt, Ph., Marquardt, D., Meyer, H., Beckert, F., Mülhaupt, R., Kölling, H., and Janiak, Ch., Nano-Structures & Nano-Objects, 2015, vol. 2, p. 11. doi 10.1016/j.nanoso.2015.07.001

    Article  CAS  Google Scholar 

  41. Esteban, R.M., Schütte, K., Brandt, Ph., Marquardt, D., Barthel, J., Beckert, F., Mülhaupt, R., and Janiak, Ch., Nano-Structures & Nano-Objects, 2015, vol. 2, p. 28. doi 10.1016/j.nanoso.2015.07.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Kushch.

Additional information

Original Russian Text © S.D. Kushch, N.S. Kuyunko, A.A. Arbuzov, L.A. Korshunova, G.V. Bondarenko, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 7, pp. 1072–1081.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushch, S.D., Kuyunko, N.S., Arbuzov, A.A. et al. Thermal reduction of graphite oxide derivatives for preparation of supports for platinum hydrogenation catalysts. Russ J Gen Chem 87, 1466–1475 (2017). https://doi.org/10.1134/S1070363217070040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217070040

Keywords

Navigation