Skip to main content
Log in

Development of reinforced composite materials with a nanoporous textile substrate and a brush-structured polymer interfacial layer

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A method for controlling the elastic deformation properties of polymer‒fiber composites was developed. The rigidity of the material is increased by the penetration of the reinforcing polymer into the pore structure of the textile substrate to form а branched interfacial layer. The nanoparticle size distribution in the polymer hydrosol products was analyzed by dynamic light scattering, the porosity of fibrous materials was measured by low temperature of adsorption and desorption of nitrogen vapor, and the polymer‒polymer interactions were studied by IR spectroscopy and differential scanning calorimetry. The method was implemented in the development of a new range of garment interfacings and allowed solution of engineering problems associated with imparting to garments a complex geometric shape and its retention in wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polimernye kompozitsionnye materialy. Struktura. Svoistva. Tekhnologii (Polymer Composites. Structure. Properties. Technologies), Berlin, A.A., Ed., St. Petersburg: Professiya, 2008.

  2. Vasil’ev, V.V., Mekhanika konstruktsii iz kompozitsionnykh materialov (Mechanics of Constructions from Composite Materials), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  3. Perepelkin, K.E., Armiruyushchie volokna i voloknistye polimernye kompozity (Reinforcing Fibers and Fibrous Polymer Composites), Moscow: NOT, 2009.

    Google Scholar 

  4. Bazhenov, S.L., Berlin, A.A., Kul’kov, A.A., and Oshmyan, V.G., Polimernye kompozitsionnye materialy. Prochnost’ i tekhnologii (Polymer Composites. Strength and Technologies), Moscow: Intellekt, 2009.

    Google Scholar 

  5. Lubin, G., Handbook of Composites, New York: Van Nostrand Reinhold, 1982.

    Book  Google Scholar 

  6. Matthews, F.L. and Rawlings, R.D., Composite Materials. Engineering and Science, Cambridge, England: Woodhead, 1999.

    Google Scholar 

  7. Prokoshkin, S.D., Brailovskii, V., Khmelevskaya, I.Yu., et al., MiTOM, 2005, no. 5, p. 24.

    Google Scholar 

  8. Brailovski, V., Prokoshkin, S.D., Inaekyan, K.E., Mater. Trans. JIM, 2006, vol. 47, no. 3, p. 795. http://www.jim.or.jp/journal/e/pdf3/47/03/795.pdf.

    Article  CAS  Google Scholar 

  9. Prokoshkin, S.D., Brailovski, V., Inaekyan, K.E., Demers, V., Khmelevskaya, I.Yu., Dobatkin, S.V., and Tatyanin, E.V., Mater. Sci. Eng. A, 2008, vol. 481, p. 114. doi org/10.1016/j.msea.2007.02.150

    Article  Google Scholar 

  10. Plate, N.A. and Shibaev, V.P., Grebneobraznye polimery i zhidkie kristally (Brush-Structured Polymers and Liquid Crystals), Moscow: Khimiya, 1980.

    Google Scholar 

  11. Subbotin, A.V. and Semenov, A.N., Polymer Sci., Ser. A, 2007, vol. 49, no. 12, p. 1328. doi 10.1134/S0965545X07120085

    Article  Google Scholar 

  12. Hadjichristidis, N., Pitsikalis, M., Pispas, S., and Iatrou, H., Chem. Rev., 2001, vol. 101, no. 12, p. 3747. doi 10.1021/cr9901337

    Article  CAS  Google Scholar 

  13. Sheiko, S.S., Sumerlin, B.S., and Matyjaszewski, M., Prog. Polym. Sci., 2008, vol. 33, no. 7, p. 759. doi org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  14. Muzafarov, A.M. and Rebrov, E.A., Vysokomol. Soedin. Ser. C, 2000, vol. 42, no. 11, p. 2015.

    CAS  Google Scholar 

  15. Voit, B., J. Polym. Sci., Polym. Chem., 2005, vol. 43, no. 13, p. 2679. doi 10.1002/pola.20821

    Article  CAS  Google Scholar 

  16. Ishizu, K., Tsubaki, K., Mori, A., and Uchida, S., Prog. Polym. Sci., 2003, vol. 28, no. 1, p. 27. doi org/10.1016/S0079-6700(02)00025-4

    Article  CAS  Google Scholar 

  17. Muzafarov, A.M., Vasilenko, N.G., Tatarinova, E.A., Ignat’eva, G.M., Myakushev, V.M., Obrezkova, M.A., Meshkov, I.B., Voronina, N.V., and Novozhilov, O.V., Polymer Sci., Ser. C, 2011, vol. 53, no. 7, p. 48. doi 10.1134/S1811238211070022

    Article  CAS  Google Scholar 

  18. Tsvetkov, V.N., Zhestkotsepnye polimernye molekuly (Rigid Chain Polymer Molecules), Leningrad: Nauka, 1986.

    Google Scholar 

  19. Kolbina, G.F., Kononov, A.I., Shtennikova, I.N., and Grishchenko, A.E., Polymer Sci., Ser. C, 2010, vol. 52, no. 7, p. 79. doi 10.1134/S1811238210010091

    Article  Google Scholar 

  20. Filippov, A.P., Belyaeva, E.V., and Krasova, A.S., Vysokomol. Soedin. Ser. A, 2014, vol. 56, no. 1, p. 1. doi 10.1134/S0965545X14010015

    CAS  Google Scholar 

  21. Fan, J., Leeuwner, W., and Hunter, L., Textile Res. J., 1997, vol. 67, no. 2, p. 137.

    Article  CAS  Google Scholar 

  22. Ancutienea, K., Strazdienea, E., and Papreckieneb, L., Proc. Estonian Acad. Sci., 2012, vol. 61, no. 3, p. 150.

    Article  Google Scholar 

  23. Gorelova, A.E. and Kornilova, N.L., Izv. Vyssch. Ucheb. Zaved. Tekhnol. Legkoi Prom–sti, 2010, vol. 9, no. 3, p. 56.

    Google Scholar 

  24. Elnashar, E.A. and Dubrovski, P.D., Autex Res. J., 2008, vol. 8, no. 2, p. 41. http://www.autexrj.org/No2-2008/0216.pdf.

    Google Scholar 

  25. Getmantseva, V.V., Goncharova, A.S., Nikitina, N.V., et al., Izv. Vyssch. Ucheb. Zaved. Tekhnol. Legkoi Prom–sti, 2011, no. 6, p. 88. http://ttp. ivgpu.com/wp-content/uploads/2015/11/335_22.pdf.

    Google Scholar 

  26. Buzov, B.A. and Alymenkova, N.D., Materialovedenie v proizvodstve izdelii legkoi promyshlennosti (shveinoe proizvodstvo) [Materials Research in Aonsumer Goods Manufacturing (Garment Manufacture)], Moscow: Akademiya, 2010. http://www.academia-moscow.ru/ftp_share/_books/fragments/fragment_17413.pdf.

    Google Scholar 

  27. Koketkin, P.P. Odezhda: tekhnologiya–tekhnika, protsessy–kachestvo (Garment: Technology—Technics, Processes—Quality), Moscow: Mosk. Gos. Univ. Dizain Tekhnol., 2001. http://search.rsl.ru/ru/record/01000745885.

    Google Scholar 

  28. Kryuchkova, G.A., Tekhnologiya i materialy shveinogo proizvodstva (Technology and Materials in Garment Manufacture), Moscow: Akademiya, 2003—2004. http://www.academia-moscow.ru/ftp_share/_books/fragments/fragment_19163.pdf.

  29. Jevsnik, S. and Gersak, J., Fibres Text East Eur., 2004, vol. 12, no. 1, issue 45, p. 47. http://www.fibtex.lodz.pl/archive.htm.

    CAS  Google Scholar 

  30. Ermakova, I.A., Kleevye sposoby obrabotki shveinykh izdelii (Fusion Techniques of Garment Processing), Vladivostok: Vladivostok. Gos. Univ. Ekonom. Servisa, 2003. https://abc.vvsu.ru/books/Kleevyje/page0001.asp.

    Google Scholar 

  31. Buzov, B.A. and Smirnova, N.A., Izv. Vyssch. Ucheb. Zaved. Tekhnol. Legkoi Prom–sti, 2012, no. 2, issue 338, p. 105. http://ttp.ivgpu.com/wp-content/uploads/2015/10/338_27.pdf.

    Google Scholar 

  32. Kubeko, A.N., Tekh. Tekstil’, 2003, no. 6. /http://rustm.net/catalog/article/632.html.

  33. Kuz’michev, V.E. and Gerasimova, N.A., Teoriya i praktika protsessov skleivaniya detalei odezhdy (Theory and Practice of Fusing Garment Details), Moscow: Akademiya, 2005. http://www.academia-moscow.ru/ftp_share/_books/fragments/fragment_20149.pdf.

    Google Scholar 

  34. Veselov, V.V. and Komarova, A.A., Izv. Vyssch. Ucheb. Zaved. Tekhnol. Legkoi Prom–sti, 2009, no. 1, p. 89. http://ttp.ivgpu.com/wp-content/uploads/2015/11/313_26.pdf.

    Google Scholar 

  35. Koksharov, S.A., Kornilova, N.L., and Meteleva, O.V., Izv. Vyssch. Ucheb. Zaved. Tekhnol. Legkoi Prom–sti, 2014, no. 1, p. 136. http://ttp. ivgpu.com/wp-content/uploads/2015/10/349_32.pdf.

    Google Scholar 

  36. Koksharov, S.A., Russ. J. Chem. Chem. Technol., 2015, vol. 58, no. 1, p. 33. http://journals.isuct.ru/public/journals/2/2015/v58_n01_2015_full.pdf.

    CAS  Google Scholar 

  37. Avakumov, E.G., Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Novosibirsk: Nauka, 1986.

    Google Scholar 

  38. Lipatova, I.M., Padokhin, V.A., Makarova, L.I., et al., Tekstil’n. Prom–st’, 1998, no. 5, p. 41. http://ttp. ivgpu.com/wp-content/uploads/2015/11/309_20.pdf.

    Google Scholar 

  39. Bruce M. Latta., Text. Res. J., 1984, vol. 54, no. 11, p. 766.

    Article  Google Scholar 

  40. Prorokova, N.P., Vavilova, S.V., and Prorokov, V.N., Fiber Chem., 2007, no. 1, p. 20. doi 10.1007/s10692-007-0005-z

    Article  Google Scholar 

  41. Bellamy, L.J., The Infra-Red Spectra of Complex Molecules, London: Methuen, 1958, ch. 18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koksharov.

Additional information

Original Russian Text © S.A. Koksharov, N.L. Kornilova, S.V. Fedosov, 2015, published in Rossiiskii Khimicheskii Zhurnal, 2015, Vol. 59, No. 3, pp. 112–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koksharov, S.A., Kornilova, N.L. & Fedosov, S.V. Development of reinforced composite materials with a nanoporous textile substrate and a brush-structured polymer interfacial layer. Russ J Gen Chem 87, 1428–1438 (2017). https://doi.org/10.1134/S1070363217060469

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217060469

Keywords

Navigation