Skip to main content
Log in

Solution process-based technologies: A new way for textile nanofunctionalization

  • Selected articles originally published in Russian in Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Recent advances in developing modification approaches for different types of materials (natural or synthetic) with the use of methods of solution chemistry, also applied for nanoparticles production, were considered. These approaches allow obtaining materials with new functionality: photocatalytic and antibacterial properties, self-cleaning surfaces, controlled hydrophilicity or hydrophobicity, etc. It was shown that solution chemistry methods allow combining the nanoparticles synthesis with textile finishing processes. Therefore, they are effective in the modification of fibers and textiles based on both natural and synthetic polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanofibers and Nanotechnology in Textiles, Brown, P.J. and Stevens, K., Eds., Boca Raton: CRC, 2007.

  2. Ner, Y., Asemota, C., Olson, J.R., and Sotzing, G.A., ACS Appl. Mater. Interfaces, 2009, vol. 1, p. 2093. doi 10.1021/am900382f

    Article  CAS  Google Scholar 

  3. Sundarrajan, S., Chandrasekaran, A.R., and Ramakrishna, S., J. Am. Ceram. Soc., 2010, vol. 93, p. 3955. doi 10.1111/j.1551-2916.2010.04117.x

    Article  CAS  Google Scholar 

  4. Li, Y., Wu, D.X., Hu, J.Y., and Wang, S.X., Colloids Surf., A, 2007, vol. 300, p. 140. doi org/10.1016/j.colsurfa.2007.01.001

    Article  CAS  Google Scholar 

  5. El-Rafie, M.H., Mohamed, A.A., Shaheen, T.I., and Hebeish, A., Carbohydr. Polym., 2010, vol. 80, p. 779. doi org/10.1016/j.carbpol.2009.12.028

    Article  CAS  Google Scholar 

  6. Su, C. and Li, J., Appl. Surf. Sci., 2010, vol. 256, p. 4220. doi org/10.1016/j.apsusc.2010.02.006

    Article  CAS  Google Scholar 

  7. Lu, H., Song, L., and Hu, Y., Polymer. Adv. Tech., 2011, vol. 22, p. 379. doi 10.1002/pat.1891

    Article  CAS  Google Scholar 

  8. Agafonov, A.V. and Vinogradov, A.V., Khim. Vys. Energ., 2008, vol. 42, p. 79.

    Google Scholar 

  9. Agafonov, A.V. and Vinogradov, A.V., J. Sol-Gel Sci. Technol., 2009, vol. 49, p. 180. doi 10.1007/s10971-008-1856-3

    Article  CAS  Google Scholar 

  10. Galkina, O.L., Vinogradov, V.V., Agafonov, A.V., and Vinogradov, A.V., Int. J. Inorg. Chem., 2011, vol. 2011, article ID 108087, doi 10.1155/2011/108087

  11. Vinogradov, A.V., Agafonov, A.V., and Vinogradov, V.V., Mendeleev Commun., 2012, vol. 22, p. 1.

    Article  Google Scholar 

  12. Djaoued, Y., Balaji, S., and Beaudoin, N., J. Sol-Gel Sci. Technol., 2013, vol. 65, p. 374. doi 10.1007/s10971-012-2948-7

    Article  CAS  Google Scholar 

  13. Vinogradov, A.V., Agafonov, A.V., and Vinogradov, V.V., J. Alloys Compd., 2012, vol. 515, p. 1. doi org/10.1016/j.jallcom.2011.11.004

    Article  CAS  Google Scholar 

  14. Vinogradov, V.V., Agafonov, A.V., and Vinogradov, A.V., J. Sol-Gel Sci. Technol., 2010, vol. 53, p. 312. doi 10.1007/s10971-009-2093-0

    Article  CAS  Google Scholar 

  15. Lai, Y.K., Tang, Y.X., Gong, J.J., Gong, D.G., Chi, L.F., Lin, C.G., and Chen, Z., J. Mater. Chem., 2012, vol. 22, p. 7420.

    Article  CAS  Google Scholar 

  16. Zhang, X.T., Jin, M., Liu, Z.Y., Tryk, D.A., Nishimoto, S., Murakami, T., and Fujishima, A., J. Phys. Chem. C, 2007, vol. 111, p. 14521.

    Article  CAS  Google Scholar 

  17. Bahners, T., Best, W., Erdmann, J., Kiray, Y., Lunk, A., Stegmaier, T., and Weber, N., Unitex, 2001, vol. 1, p. 47.

    Google Scholar 

  18. Praschak, D., Bahners, T., and Schollmeyer, E., Appl. Phys. A., 2000, vol. 71, p. 577. doi 10.1007/s003390000614

    Article  CAS  Google Scholar 

  19. Liuxue, Z., Peng, L., and Zhixing, S., Mater. Chem. Phys., 2006, vol. 98, p. 111. doi org/10.1016/j.matchemphys.2005.08.071

    Article  Google Scholar 

  20. Harifi, T. and Montazer, M., Carbohydr. Polym., 2012, vol. 88, p. 1125. doi doi.org/10.1016/j.carbpol.2012.02.017

    Article  CAS  Google Scholar 

  21. Chu, S.-Z., Inoue, S., Wada, K., Li, D., Haneda, H., and Awatsu, S., J. Phys. Chem. B, 2003, vol. 107, p. 6586. doi 10.1021/jp0349684

    Article  CAS  Google Scholar 

  22. Daoud, W.A. and Xin, J.H., J. Sol-Gel Sci. Technol., 2004, vol. 29, p. 25. doi 10.1023/B:JSST. 0000016134.19752.b4

    Article  CAS  Google Scholar 

  23. Xiao, X., Chen, F., Wei, Q., and Wu, N., J. Coat. Technol. Res., 2009, vol. 6, p. 537. doi 10.1007/s11998-008-9157-x

    Article  CAS  Google Scholar 

  24. Huang, K., Yang, K., Lin, S., and Lian, W., J. Appl. Polym. Sci., 2007, vol. 106, p. 2559. doi 10.1002/app. 25281

    Article  CAS  Google Scholar 

  25. Wang, C. and Chen, C., Appl. Catal., A, 2005, vol. 293, p. 171. doi org/10.1016/j.apcata.2005.07.007

    Article  CAS  Google Scholar 

  26. Cerveau, G., Corriu, R.J.P., Lerouge, F., Bellec, N., Lorcy, D., and Nobili, M., Chem. Commun., 2004, p. 396.

    Google Scholar 

  27. Galkina, O.L., Vinogradov, V.V., Vinogradov, A.V., and Agafonov, A.V., Nanotechnol. in Russia, 2012, no. 7, p. 604. doi 10.1134/S1995078012060031

    Article  Google Scholar 

  28. Galkina, O.L., Sycheva, A., Blagodatskiy, A., Kaptay, G., Katanaev, V.L., Seisenbaeva, G.A., Kessler, V.G., and Agafonov, A.V., Surf. Coat. Tech., 2014, vol. 253, p. 171. doi org/10.1016/j.surfcoat.2014.05.033

    Article  CAS  Google Scholar 

  29. Wang, R. and Wang, Y., Procedia Eng., 2011, vol. 18, p. 307.

    Article  CAS  Google Scholar 

  30. Vinogradov, V.V., Agafonov, A.V., and Vinogradov, A.V., Mendeleev Commun., 2013, vol. 23, p. 286.

    Article  CAS  Google Scholar 

  31. Yin, Y., Guo, N., Wang, C., and Rao, Q., Ind. Eng. Chem. Res., 2014, vol. 53, p. 14322. doi 10.1021/ie502338y

    Article  CAS  Google Scholar 

  32. Nadtochenko, V.A., Radtsig, M.A., and Khmel’, I.A., Ross. Nanotekhnol., 2010, vol. 5, p. 37.

    Google Scholar 

  33. Ohko, Y, Utsumi, Y, Niwa, C, et al., J. Biomed. Mater. Res., 2001, vol. 58, p. 97. doi 10.1002/1097-4636(2001) 58:1〈97::AID-JBM140〉3.0.CO;2-8

    Article  CAS  Google Scholar 

  34. Tarquinio, K.M., Kothurkar, N.K., Goswami, D.Y., Sanders R.C., Zaritsky, A.L, LeVine, A.M., Int. J. Nanomedicine, 2010, vol. 5, p. 177. doi org/10.2147/IJN.S8746

    Article  CAS  Google Scholar 

  35. Wang, H., Huang, T., Jing, J., Wang, P., Yang, M., Cui, W., Zheng, Y., and Shen, H., J. Hosp. Infect., 2010, vol. 76, p. 1. doi org/10.1016/j.jhin.2010.04.025

    Article  CAS  Google Scholar 

  36. Hardes, J., von Eiff, C., Streitbuerger, A., Balke, M., Budny, T., Henrichs, M.P., Hauschild, G., and Ahrens, H., J. Surg Oncol., 2010, vol. 101, p. 389. doi 10.1002/jso.21498

    Google Scholar 

  37. Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H., and Sasatsu, M., J. Inorg. Biochem., 2002, vol. 92, p. 37. doi org/10.1016/S0162-0134(02)00489-0

    Article  CAS  Google Scholar 

  38. Azad, A.-M., Dolan, S., and Akbar, S.A., Int. J. Appl. Ceram. Technol., 2008, vol. 5, p. 480. doi 10.1111/j.1744-7402.2008.02227.x

    Article  CAS  Google Scholar 

  39. Azad, A.-M., Hershey, R., Aboelzahab, A., and Goel, V., Adv. Orthop., 2011, Artcile ID571652, p. 1.

    Google Scholar 

  40. Kuhn, K.P., Chabernya, I.F., Massholderb, K., and Stickler, M., Chemosphere, 2003, vol. 53, p. 71. doi org/10.1016/S0045-6535(03)00362-X

    Article  CAS  Google Scholar 

  41. Koseki, H., Shiraishi, K., Tsurumoto, T., Asahara, T., Baba, K., Taoda, H., Terasaki, N., and Shindo, H., Surf. Interface Anal., 2009, vol. 41, p. 771. doi 10.1002/sia.3087

    Article  CAS  Google Scholar 

  42. Montazer, M., Pakdel, E., and Behzadnia, A., J. Appl. Polym. Sci., 2011, vol. 121, p. 3407. doi 10.1002/app. 33858

    Article  CAS  Google Scholar 

  43. Kowal, K., Cronin, P., Dworniczek, E., Zeglinski, J., Tiernan, P., Wawrzynska, M., Podbielska, H., and Tofail, S.A.M., RSC Adv., 2014, vol. 4, p. 19945.

    Article  CAS  Google Scholar 

  44. Oltarzhevskaya, N.D., Korovina, M.A., and Savilova, L.B., Ross. Khim. Zh., 2002, vol. 46, p. 133–141.

    CAS  Google Scholar 

  45. Galkina, O.L., Ivanov, V.K., Agafonov, A.V., Seisenbaeva, G.A., and Kessler, V.G., J. Mater. Chem. B, 2015, vol. 3, p. 1688. doi 10.1039/C4TB01823K

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Agafonov.

Additional information

Original Russian Text © A.V. Agafonov, O.L. Galkina, 2015, published in Rossiiskii Khimicheskii Zhurnal, 2015, Vol. 59, No. 3, pp. 96–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, A.V., Galkina, O.L. Solution process-based technologies: A new way for textile nanofunctionalization. Russ J Gen Chem 87, 1412–1417 (2017). https://doi.org/10.1134/S1070363217060445

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217060445

Keywords

Navigation