Skip to main content

Simulation and synthesis of graphene oxide from expanded graphite

Abstract

Expanded graphite oxide and multilayered graphene oxide have been synthesized. The processes of thermal expansion of intercalated graphite and oxidation of graphene have been simulated. Thermal expansion of intercalated graphite and its oxidation into graphite oxide have been studied by a set of physico-chemical methods. Quantum-chemical simulation has revealed that the edge atoms of the graphene layers appearing during thermal expansion are the most active in the reactions of graphene oxidation.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Dowell, M.B., Book of Abstracts of 12th Bien. Conf. Carbon, 1975, p. 31.

    Google Scholar 

  2. 2.

    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ego osnove (Carbon, Interlayer Compounds and Composites Based on It), Moscow Aspekt-Press, 1977.

    Google Scholar 

  3. 3.

    Zav’yalov, D.E., Zybina, O.A., Chernova, N.S., Varlamov, A.V., and Mnatsakanov, S.S., Khim. Prom–t’, 2009, vol. 86, no. 8, p. 414.

    Google Scholar 

  4. 4.

    Dideikin, A.T., Sokolov, V.V., Sakseev, D.A., Baidakova, M.V., and Vul’, A.Ya., Tech. Phys., 2010, vol. 55, p. 1378. doi 10.1134/S1063784210090239

    CAS  Article  Google Scholar 

  5. 5.

    Liao, K.-H., Mittal, A., Bose, S., Leighton, C., Mkhoyan, K.A., and Macosko, C.W., ACS Nano, 2011, vol. 5, no. 2, p. 1253. doi 10.1021/nn1028967

    CAS  Article  Google Scholar 

  6. 6.

    Mei, X.G. and Ouyang, J.Y., Carbon, 2011, vol. 49, no. 15, p. 5389. doi 10.1016/j.carbon.2011.08.019

    CAS  Article  Google Scholar 

  7. 7.

    Dey, R.S., Hajra, S., Sahu, R.K., Raj, C.R., and Panigrahi, M.K., Chem. Commun., 2012, vol. 48, no. 12, p. 1787. doi 10.1039/C2CC16031E

    CAS  Article  Google Scholar 

  8. 8.

    Shul’ga, Y.M., Vasilets, V.N., Baskakov, S.A., Muradyan, V.E., Skryleva, E.A., and Parkhomenko, Y.N., High Energy Chem., 2012, vol. 46, no. 2, p. 117. doi 10.1134/S0018143912020099

    Article  Google Scholar 

  9. 9.

    Wei, A., Wang, J., Long, Q., Liu, X., Li, X., Dong, X., and Huang, W., Mater. Res. Bull., 2011, vol. 46, no. 11, p. 2131. doi 10.1016/j.materresbull.2011.06.036

    CAS  Article  Google Scholar 

  10. 10.

    Raukhvarger, A.B., Solov’ev, M.E., and Irzhak, V.I., Russ. J. Phys. Chem. (A), 2016, vol. 90, no. 4, p. 843. doi 10.1134/S0036024416040269

    CAS  Article  Google Scholar 

  11. 11.

    Sorokina, N.E., Khaskov, M.A., Avdeev, V.V., and Nikol’skaya, I.V., Russ. J. Gen. Chem., 2005, vol. 75, no. 2, p. 162. doi 10.1007/s11176-005-0191-4

    CAS  Article  Google Scholar 

  12. 12.

    Williamson, G.K., Proc. Royal Soc. London. (A), 1960, vol. 257, no. 1291, p. 457.

    CAS  Article  Google Scholar 

  13. 13.

    Hohenberg, P. and Kohn, W., Phys. Rev. B, 1964, vol. 136, no. 3, p. B864.

    Google Scholar 

  14. 14.

    Kohn, W. and Sham, L., Phys. Rev. A, 1965, vol. 140, no. 4, p. A1133.

    Google Scholar 

  15. 15.

    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913

    CAS  Article  Google Scholar 

  16. 16.

    Miehlich, B.A., Savin, H.S., and Preuss, H., Chem. Phys. Lett., 1989, vol. 157, no. 3, p. 200. doi 10.1016/0009-2614(89)87234-3

    CAS  Article  Google Scholar 

  17. 17.

    Mueller, M., Fundamentals of Quantum Chemistry. Molecular Spectroscopy and Modern Electronic Structure Computation, New York Kluwer Academic Publishers, 2001.

    Google Scholar 

  18. 18.

    Valieva, M., Bylaska, E.J., Govind, N., Kowalski, K., Straatsma, T.P., Van Dam, H.J.J., Wang, D., Nieplocha, J., Apra, E., Windus, T.L., and De Jong, W.A., Comput. Phys. Commun., 2010, vol. 181, no. 9, p. 1477. doi 10.1016/j.cpc.2010.04.018

    Article  Google Scholar 

  19. 19.

    Levine, I.N., Physical Chemistry, New York McGraw-Hill, 2009.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. E. Solov’ev.

Additional information

Original Russian Text © M.E. Solov’ev, A.B. Raukhvarber, N.G. Savinskii, V.I. Irzhak, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 4, pp. 677–683.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, M.E., Raukhvarber, A.B., Savinskii, N.G. et al. Simulation and synthesis of graphene oxide from expanded graphite. Russ J Gen Chem 87, 805–811 (2017). https://doi.org/10.1134/S1070363217040223

Download citation

Keywords

  • expanded graphite
  • graphite oxide
  • quantum-chemical simulation