Advertisement

Russian Journal of General Chemistry

, Volume 87, Issue 4, pp 690–697 | Cite as

The effect of the medium polarity on the mechanism of the reaction of hydroxybenzenes with hydrazyl radical in aprotic solvents

  • N. I. Belaya
  • A. V. Belyj
  • O. M. Zarechnaya
  • I. N. Scherbakov
  • V. M. Mikhalchuk
  • V. S. Doroshkevich
Article

Abstract

Mechanisms of the reaction of di- and trihydroxybenzenes with 2,2′-diphenyl-1-picrylhydrazyl (stable radical) in aprotic media of different polarity have been elucidated by experimental and quantum-chemical methods. Kinetic, stoichiometric, and activation parameters of the reaction have been determined. In benzene (nonpolar solvent), the studied reaction occurs via the hydrogen atom transfer mechanism; in the polar solvent with weak ionizing ability (i.e. DMSO), the reaction predominantly occurs via the faster mechanism of coupled electron and proton transfer.

Keywords

hydroxybenzene 2,2′-diphenyl-1-picrylhydrazyl antiradical activity reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vermerris, W. and Nicolson, R., Phenolic Compound Biochemistry, Dodrecht Springer, 2006.Google Scholar
  2. 2.
    Foti, M.C., Daquino, C., Mackie, I.D., DiLabio, G.A., and Ingold, K.U., J. Org. Chem., 2008, vol. 73, p. 9270. doi 10.1021/jo8016555CrossRefGoogle Scholar
  3. 3.
    Litwinienko, G. and Ingold, K.U., J. Org. Chem., 2005, vol. 70, no. 68, p. 8982. doi 10.1021/jo051474pCrossRefGoogle Scholar
  4. 4.
    Sun, B., Spranger, I., Yang, J., Leandro, C., Guo, L., Canrio, S., Zhao, Y., and Wu, C., J. Agric. Food Chem., 2009, vol. 57, no. 18, p. 8623. doi 10.1021/jf901610hCrossRefGoogle Scholar
  5. 5.
    Shang, Y.-J., Liu, B.-Y., and Zhao, M.-M., Czech J. Food Sci., 2015, vol. 33, p. 210. doi 10.17221/611/2014-CJFSCrossRefGoogle Scholar
  6. 6.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision B.01 Gaussian, Inc., Wallingford CT,2010.Google Scholar
  7. 7.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  8. 8.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  9. 9.
    Weinberg, D.R., Gagliardi, C.J., Hull, J.F., Murphy, C.F., Kent, C.A., Westlake, B., Paul, A., Ess, D.H., McCafferty, G.D., and Meyer, T.J., Chem. Rev., 2007, vol. 107, no. 11, p. 5004. doi 10.1021/cr0500030CrossRefGoogle Scholar
  10. 10.
    Stewart, J.J.P., J. Mol. Model., 2007, vol. 13, p. 1173.CrossRefGoogle Scholar
  11. 11.
    Young, D., Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems, New York: Wiley, 2001, p. 227.Google Scholar
  12. 12.
    Tomasi, J., Mennucci, B., and Cammi, R., Chem. Rev., 2005, vol. 105, p. 2999. doi 10.1021/cr9904009.CrossRefGoogle Scholar
  13. 13.
    Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., and Skiff, W.M., J. Am. Chem. Soc., 1992, vol. 114, p. 10024. doi 10.1021/ja00051a040.CrossRefGoogle Scholar
  14. 14.
    Denisov, E.T., Kinetika gomogennykh khimicheskikh reaktsii (Kinetics of Homogeneous Chemical Reactions), Moscow: Vysshaya Shkola, 1978, p. 100.Google Scholar
  15. 15.
    Armarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Burlington Elsevier Science, 2003.Google Scholar
  16. 16.
    Preparative Organic Chemistry, Wolfson, N.S., Ed., Moscow Gos. Khim. Izd., 1959.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • N. I. Belaya
    • 1
  • A. V. Belyj
    • 1
  • O. M. Zarechnaya
    • 2
  • I. N. Scherbakov
    • 3
  • V. M. Mikhalchuk
    • 1
  • V. S. Doroshkevich
    • 1
  1. 1.Donetsk National UniversityDonetskUkraine
  2. 2.Litvinenko Institute of Physico-Organic Chemistry and Coal ChemistryDonetskUkraine
  3. 3.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations