Skip to main content
Log in

Biomimetic complexes of Cd(II), Mn(II), and Zn(II) with 1,1-diaminobutane–Schiff base. EGA/MS study of the thermally induced decomposition

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Frequently, in addition to X-ray and spectroscopic approaches, thermal analysis is the method of choice for comprehensive characterization of precipitated metal complexes. However, thermogravimetry itself is not sufficient enough for explaining complex decomposition or releasing steps. For correct elucidation of the decomposition mechanism of biomimetic Cd(II), Mn(II), and Zn(II) complexes with 1,1-diaminobutane–Schiff base, evolved gas analysis by mass spectrometry (EGA/MS) was used to define the thermally induced steps. Those were synthesized and characterized by hyphenated thermogravimetry-mass spectrometry (TG–MS) that allowed to interpret the decomposition steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nair, M.S., Arish, D., and Joseyphus, R.S., J. Saudi Chem. Soc., 2012, vol. 16, p. 83. doi 10.1016/j.jscs.2010.11.002

    Article  CAS  Google Scholar 

  2. Singh, K., Barwa, M.S., and Tyagi, P., Eur. J. Med. Chem., 2006, vol. 41, p. 147. doi 10.1016/j.ejmech.2005.06.006

    Article  Google Scholar 

  3. Gupta, K.C. and Sutar, A.K., Coord. Chem. Rev., 2008, vol. 252, nos. 12–14, p. 1420. doi 10.1016/j.ccr.2007.09.005

    Article  CAS  Google Scholar 

  4. Drabent, K., Bialoska, A., and Ciunik, Z., Inorg. Chem. Commun., 2004, vol. 7(2), p. 224. doi 10.1016/j.inoche.2003.11.008

    Article  CAS  Google Scholar 

  5. Perrino, C., Marconi, E., Tofful, L., Farao, C., Materazzi, S., and Canepari, S., Atmospheric Environment, 2012, vol. 54, p. 36. doi 10.1016/j.atmosenv.2012.02.07

    Article  CAS  Google Scholar 

  6. Arion, V.B., Reisner, E., Fremuth, M., Jokupec, M.A., Keppler, B.K., Kukushkin, V.Y., and Pombeiro, A.J.L., J. Inorg. Biochem., 2003, vol. 96, p. 95. doi 10.1016/S0162-0134(03)80556-1

    Article  Google Scholar 

  7. Liu, Y., Kravtsov, V., Walsh, R.D., Poddar, P., Srikanthc, H., and Eddaoudi, M., Chem. Commun., 2004, p. 2806. doi 10.1039/B409502B

    Google Scholar 

  8. Aiello, D., Materazzi, S., Risoluti, R., Thangavel, H., Di Donna, L., Mazzotti, F., Casadonte, F., Siciliano, C., Sindona, G., and Napoli, A., Molec. Biosyst., 2015, vol. 11, p. 2373. doi 10.1039/c5mb00148j

    Article  CAS  Google Scholar 

  9. Kabeer, A.S., Baseer, M.A., and Mote, N.A., Asian J. Chem., 2001, vol. 13(2), p. 496

    Google Scholar 

  10. El-Masry, A.H., Fahmy, H.H., and Abdelwahed, S.H.A., Molecules, 2000, vol. 5, p. 1429. doi 10.3390/51201429

    Article  CAS  Google Scholar 

  11. More, P.G., Bhalvankar, R.B., and Patter, S.C., J. Ind. Chem. Soc., 2001, vol. 78(9), p. 474.

    CAS  Google Scholar 

  12. Desai, S.B., Desai, P.B., and Desai, K.R., Heterocycl. Commun., 2001, vol. 7(1), p. 83

    Article  CAS  Google Scholar 

  13. Ashley, D. and Brindle, M., J. Clin. Pathol., 1960, vol. 13, p. 336.

    Article  CAS  Google Scholar 

  14. Coast, J., Smith, R., and Miller, M., Health Econ., 1996, vol. 5, p. 217.

    Article  CAS  Google Scholar 

  15. Kurdziel, K., Glowiak, T., Materazzi, S., and Jezierska, J., Polyhedron, 2003, vol. 22, p. 3123. doi 10.1016/j.poly.2003.07.004

    Article  CAS  Google Scholar 

  16. Materazzi, S., Risoluti, R., Finamore, J., and Napoli, A., Microchem. J., 2014, vol. 115, p. 27. doi 10.1016/j.microc.2014.02.006

    Article  CAS  Google Scholar 

  17. Risoluti, R., Piazzese, D., Napoli, A., and Materazzi, S., J. Anal. Appl. Pyrol., 2016, vol. 117, p. 82. doi 10.1016/j.jaap.2015.11.018

    Article  CAS  Google Scholar 

  18. Risoluti, R., Fabiano, M.A., Gullifa, G., Vecchio Ciprioti, S., and Materazzi, S., Appl. Spectr. Rev., 2016, published on line. doi 10.1080/05704928.2016.1207658

    Google Scholar 

  19. Materazzi, S. and Risoluti, R., Appl. Spectr. Rev., 2014, vol. 49, p. 635. doi 10.1080/05704928.2014.887021

    Article  CAS  Google Scholar 

  20. Materazzi, S. and Vecchio, S., Appl. Spectr. Rev., 2013, vol. 48, p. 654. doi 10.1080/05704928.2013.786722

    Article  Google Scholar 

  21. Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2011, vol. 46, p. 261. doi 10.1080/05704928.2011.565533

    Article  Google Scholar 

  22. Materazzi, S. and Vecchio, S., Appl. Spectrosc. Rev., 2010, vol. 45, p. 241. doi 10.1080/05704928.2010.483664

    Article  Google Scholar 

  23. Risoluti, R., Materazzi, S., Sorrentino, F., Maffei, L., and Caprari, P., Talanta 2016, vol. 159, p. 425. doi 10.1016/j.talanta.2016.06.037

    Article  CAS  Google Scholar 

  24. Materazzi, S., Risoluti, R., and Napoli, A., Thermochim. Acta, 2015, vol. 606, p. 90. doi 10.1016/j.tca.2015.03.009

    Article  CAS  Google Scholar 

  25. Romolo, F.S., Ferri, E., Mirasoli, M., D’Elia, M., Ripani, L., Peluso, G., Risoluti, R., Maiolini, E., and Girotti, S., For. Sci. Int., 2015, vol. 246, p. 25. doi 10.1016/j.forsciint.2014.10.037

    CAS  Google Scholar 

  26. Materazzi, S., Napoli, A., Finamore, J., Risoluti, R., and D’Arienzo, S., Int.J.Mass Spectrom., 2014, vols. 365–366, p. 372. doi 10.1016/j.ijms.2014.03.013

    Article  Google Scholar 

  27. Risoluti, R., Materazzi, S., Gregori, A., and Ripani, L., Talanta, 2016, vol. 153, p. 407. doi 10.1016/j.talanta.2016.02.044

    Article  CAS  Google Scholar 

  28. Materazzi, S., De Angelis Curtis, S., Vecchio Ciprioti, S., Risoluti, R., and Finamore, J., J. Therm. Anal. Cal., 2014, vol. 116(1), p. 93. doi 10.1007/s10973-013-3495-3

    Article  CAS  Google Scholar 

  29. Risoluti, R., Gullifa, G., Fabiano, M.A., and Materazzi, S., Russ. J. Gen. Chem., 2015, vol. 85, no. 10, p. 2374. doi 10.1134/S1070363215100242

    Article  CAS  Google Scholar 

  30. Vecchio, S., Materazzi, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2013, vol. 568, p. 31. doi 10.1016/j.tca.2013.06.016

    Article  CAS  Google Scholar 

  31. Alaghaz, A.M.A., J. Mol. Struct., 2014, vol. 1072, p. 103. doi 10.1016/j.molstruc.2014.04.079

    Article  CAS  Google Scholar 

  32. Bretti, C., Crea, F., de Stefano, C., Foti, C., and Vianelli, G., J.Chem.Eng.Data, 2013, vol. 58, p. 2835. doi 10.1021/je400568u

    Article  CAS  Google Scholar 

  33. Bretti, C., Crea, F., de Stefano, C., Foti, C., Materazzi, S., and Vianelli, G., J. Chem. Eng. Data, 2013, vol. 58, p. 2835. doi 10.1021/je400568u

    Article  CAS  Google Scholar 

  34. Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., Thermochim. Acta, 2012, vol. 543, p. 183. doi 10.1016/j.tca.2012.05.013

    Article  CAS  Google Scholar 

  35. Materazzi, S., Foti, C., Crea, F., Risoluti, R., and Finamore, J., Thermochim. Acta, 2014, vol. 580, p. 7. doi 10.1016/j.tca.2014.01.025

    Article  CAS  Google Scholar 

  36. De Angelis Curtis, S., Kurdziel, K., Materazzi, S., and Vecchio, S., J. Therm. Anal. Calorim., 2008, vol. 92, p. 109. doi 10.1007/s10973-007-8747-7

    Article  Google Scholar 

  37. Papadopoulos, C., Cristovao, B., Ferenc, W., Hatzidimitriou, A., Vecchio, S., Risoluti, R., and Lalia Kantouri, M., J. Therm. Anal. Calorim., 2016, vol. 123, p. 717. doi 10.1007/s10973-015-4976-3

    Article  CAS  Google Scholar 

  38. Materazzi, S., Vecchio, S., Wo, L.W., and De Angelis Curtis, S., J. Therm. Anal. Calorim., 2011, vol. 103, p. 59. doi 10.1007/s10973-010-1137-6

    Article  CAS  Google Scholar 

  39. Vecchio, S., Materazzi, S., and De Angelis Curtis, S., J. Therm. Anal. Calorim., 2013, vol. 112, p. 529. doi 10.1007/s10973-012-2762-z

    Article  Google Scholar 

  40. Risoluti, R., Gullifa, G., Fabiano, M.A., Wo, L.W., and Materazzi, S., Russ. J. Gen. Chem., 2017, vol. 87, no. 2, p. 300. doi 10.1134/S1070363217020244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Materazzi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risoluti, R., Fabiano, M.A., Gullifa, G. et al. Biomimetic complexes of Cd(II), Mn(II), and Zn(II) with 1,1-diaminobutane–Schiff base. EGA/MS study of the thermally induced decomposition. Russ J Gen Chem 87, 564–568 (2017). https://doi.org/10.1134/S107036321703029X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321703029X

Keywords

Navigation