Skip to main content
Log in

New nitrogen heterocycles containing a ferrocene fragment: Optical and physicochemical properties

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

New thermally stable 2,4,6-trisubstituted pyrimidines containing aromatic (ferrocene and para-substituted benzene) fragments at the C4 and C6 positions and an amino group or pyrrole ring at the C2 positions of the pyrimidine ring have been synthesized, and their optical and electrochemical properties have been studied. The redox potentials of the ferrocene fragments therein have been determined by cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemenovskii, D.A., Soros. Obrazovat. Zh., 1997, no. 2, p. 64.

    Google Scholar 

  2. Nesmeyanov, A.N., Khimiya ferrotsena (Chemistry of Ferocene), Moscow Nauka, 1969.

    Google Scholar 

  3. Nesmeyanov, A.N., Ferrotsen i rodstvennye soedineniya (Ferrocene and Related Compounds), Moscow Nauka, 1982.

    Google Scholar 

  4. Ferrocenes: Ligands, Materials and Biomolecules, Štepnicka, P., Ed., Chichester Wiley, 2008.

  5. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Togni, A. and Hayashi, T., Eds., New York Wiley, 2008.

  6. Kan, H., Liu, R., Sun, H., Zhen, J., Li, Q., and Huang, Y., J. Phys. Chem. B, 2012, vol. 116, no. 1, p 55. doi 10.1140/epjc/s10052-012-1945-x

    Google Scholar 

  7. Palomera, N., Vera, J.L., Melendez, E., Ramirez-Vick, J.E., Tomar, M.S., Arya, S.K., and Singh, S.P., J. Electroanal. Chem., 2011, vol. 33, p. 33. doi 10.1016/j.jelechem.2011.04.019

    Article  Google Scholar 

  8. Presnova, G.V., Rubtsova, M.Yu., and Egorov, A.M., Ross. Khim. Zh., 2008, vol. 52, no. 2, p. 60.

    CAS  Google Scholar 

  9. Zapata, F., Caballero, A., Molina, P., and Tarraga, A., Sensors, 2010, vol. 10, p. 11311. doi 10.3390/s101211311

    Article  CAS  Google Scholar 

  10. Hwang, J., Yang, N.C., Choi, T., and Suh, D.H., Polymer, 2002, vol. 43, no. 19, p. 5257. doi 10.1016/S0032-3861(02)00372-5

    Article  CAS  Google Scholar 

  11. Liu, K., Fournier-Bidoz, S., Ozin, G.A., and Manners, I., Chem. Mater., 2009, vol. 21, no. 9, p. 1781. doi 10.1021/cm900164b

    Article  Google Scholar 

  12. Kadkin, O. N and Galyametdinov, Yu.G., Russ. Chem. Rev., 2012, vol. 81, no. 8, p. 675. doi 10.1070/RC2012v081n08ABEH004270

    Article  CAS  Google Scholar 

  13. Hempenius, M.A., Cirmi, C., Savio, F.L., Song, J., and Vancso, G.J., Macromol. Rapid Commun., 2010, vol. 31, p. 772. doi 10.1002/marc.200900908

    Article  CAS  Google Scholar 

  14. Staff, R.H., Gallei, M., Mazurowski, M., Rehahn, M., Berger, R., Landfester, K., and Crespy, D., ACS Nano, 2012, vol. 6, no. 10, p. 9042. doi 10.1021/nn3031589

    Article  CAS  Google Scholar 

  15. Silicon-Containing Dendritic Polymers, Dvornic, P.R. and Owen, M.J., Eds., Dordrecht Springer, 2009.

  16. Bruña, S.I., Martínez-Montero, A., González-Vadillo, M., Martín-Fernández, C., Montero-Campillo, M.M., Mó, O., and Cuadrado, I., Macromolecules, 2015, vol. 48, no. 19, p. 6955. doi 10.1021/acs.macromol.5b01683

    Article  Google Scholar 

  17. Takahashi, S. and Anzai, J.-i., Materials, 2013, vol. 6, p. 5742. doi 10.3390/ma6125742

    Article  CAS  Google Scholar 

  18. Pietschnig, R., Chem. Soc. Rev., 2016, vol. 45, p. 5216. doi 10.1039/C6CS00196C

    Article  CAS  Google Scholar 

  19. Abashev, G.G., Antuf’eva, A.D., Bushueva, A.Yu., Kudryavtsev, P.G., Osorgina, I.V., Syutkin, R.V., and Shklyaeva, E.V., Russ. J. Appl. Chem., 2010, vol. 83, no. 8, p. 1435. doi 10.1134/S1070427210080215

    Article  CAS  Google Scholar 

  20. Antuf’eva, A.D., Shavrina, T.V., Shklyaeva, E.V., and Abashev, G.G., Butlerov. Soobshch., 2015, vol. 42, no. 4, p. 61.

    Google Scholar 

  21. Rashinkar, G.S., Pore, S.B., Mote, K.B., and Salunkhe, R.S., Indian J. Chem., Sect. B, 2009, vol. 48, p. 606.

    Google Scholar 

  22. Varga, L., Nagy, T., Kovesdi, I., Benet-Buchholz, J., Dormon, G., Urge, L., and Darvas, F., Tetrahedron, 1959, vol. 5, p. 655. doi 10.1016/S0040-4020(02)01560-0

    Google Scholar 

  23. Solankee, A., Lad, S., Solankee, S., and Patel, G., Indian J. Chem., Sect. B, 2009, vol. 48, p. 1442.

    Google Scholar 

  24. Bushueva, A.Yu., Shklyaeva, E.V., and Abashev, G.G., Mendeleev Commun., 2009, vol. 19, p. 329. doi 10.1016/j.mencom. 2009.11.012

    Article  CAS  Google Scholar 

  25. Comprehensive Organic Name Reactions and Reagents, Wang, Z., Ed., Hoboken: Wiley, 2010, vol. 1, p. 465.

  26. Nakazaki, J., Chung, I., Matsushita, M.M., Sugawara, T., Watanabe, R., Izuoka, A., and Kawada, Y., J. Mater. Chem., 2003, vol. 13, no. 5, p. 1011. doi 10.1039/B211986B

    Article  CAS  Google Scholar 

  27. Nagy, A.G. and Toma, Š., J. Organomet. Chem., 1984, vol. 266, p. 257. doi 10.1016/0022-328X(84)80138-2

    Article  CAS  Google Scholar 

  28. Toma, Š., Collect. Czech. Chem. Commun., 1969, vol. 34, p. 2271. doi 10.1135/cccc19692771

    Google Scholar 

  29. Wu, X., Tiekink, E.R.T., Kosteski, I., Kocherginski, N., Tan, A.L.C., Kho, S.B., Wilairat, P., and Go, M.-L., Eur. J. Pharm. Sci., 2006, vol. 27, p. 175. doi 10.1016/j.ejps.2005.09.007

    Article  CAS  Google Scholar 

  30. Wu, X., Wilairat, P., and Go, M.-L., Bioorg. Med. Chem. Lett., 2002, vol. 12, p. 2299. doi 10.1016/S0960-894X (02)00430-4

    Article  CAS  Google Scholar 

  31. CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (re-lease 27-03-2014 CrysAlis171.NET).

  32. Liu, Y.-H., Liu, J.-F., Jian, P.-M., and Liu, X.-L., Acta Crystallogr., Sect. E, 2008, vol. 64, p. m1001. doi 10.1107/S1600536808020059

  33. Son, K.-I. and Noh, D.-Y., J. Korean Chem. Soc., 2007, vol. 51, p. 591. doi 10.5012/jkcs.2007.51.6.591

    Article  CAS  Google Scholar 

  34. Meng, H., Zheng, J., Lovinger, A.J., Wang, B.-C., van Patten, P.G., and Bao, Z., Chem. Mater., 2003, vol. 15, p. 1778. doi 10.1021/cm020866z

    Article  CAS  Google Scholar 

  35. Luk’yanova, M.A., Garafutdinov, R.R., Sakhabutdinova, A.R., Chemeris, A.V., and Talipov, R.F., Vestn. Bashk. Univ., 2012, vol. 17, no. 2, p. 894.

    Google Scholar 

  36. Fery-Forgues, S. and Delvaux-Nicot, B., J. Photochem. Photobiol., A, 2000, vol. 132, no. 3, p. 137. doi 10.1016/S1010-6030(00)00213-6

    Article  CAS  Google Scholar 

  37. Fery-Forgues, S., Delvaux-Nicot, B., Lavabre, D., and Rurack, K., J. Photochem. Photobiol., A, 2003, vol. 155, nos. 1–3, p. 107. doi 10.1016/S1010-6030(02)00400-8

    Article  CAS  Google Scholar 

  38. Wang, X.-C., Tian, Y.-P., Kan, Y.-H., Zuo, C.-Y., Wu, J.-Y., Jin, B.-K., Zhou, H.-P., Yang, J.-X., Zhang, S.-Y., Tao, X.-T., and Jiang, M.-H., Dalton Trans., 2009, p. 4096. doi 10.1039/b900705a

    Google Scholar 

  39. Chiballe, K., Moss, J.R., Blackie, M., van Schalkwyk, D., and Smith, P., Tetrahedron Lett., 2000, vol. 41, no. 32, p. 6231. doi 10.1016/S0040-4039(00)01036-4

    Article  Google Scholar 

  40. Dimmock, J.R., Kandepu, N.M., Hetherington, M., Quail, J.W., Pugazhenthi, U., Sudom, A.M., Chamankhah, M., Rose, P., Pass, E., Allen, T.M., Halleran, S., Szydlowski, J., Mutus, B., Tannous, M., Manavathu, E.K., Myers, T.G., de Clercq, E., and Balzarini, J., J. Med. Chem., 1998, vol. 71, no. 7, p. 1014. doi 10.1021/jm970432t

    Article  Google Scholar 

  41. Dimmock, J.R., Zello, G.A., Oloo, E.O., Quail, J.W., Kraatz, H.B., Perjisi, P., Aradi, F., Takács-Novák, K., Allen, T.M., Santos, C.L., Balzarini, J., de Clercq, E., and Stables, J.P., J. Med. Chem., 2002, vol. 45, p. 14. doi 10.1021/jm010559p

    Article  Google Scholar 

  42. Goyal, R.N. and Sangal, A., J. Electroanal. Chem., 2002, vol. 521, nos. 1–2, p. 72. doi 10.1016/S0022-0728 (02)00645-9

    Article  CAS  Google Scholar 

  43. Tavares, E.M., Carvalho, A.M., Gonçalves, L.M., Valente, I.M., Moreira, M.M., Guido, L.F., Rodrigues, J.A., Doneux, T., and Barros, A.A., Electrochim. Acta, 2013, vol. 90, p. 440. doi 10.1016/j.electata.2012.12.040

    Article  CAS  Google Scholar 

  44. Naik, K.M. and Nandibewoor, S.T., Am. J. Anal. Chem., 2012, vol. 3, p. 656. doi 10.4236/ajac.2012.39086

    Article  Google Scholar 

  45. Koyuncu, S., Zafer, C., Sefer, E., Koyuncu, F.B., Demic, S., Kaya, I., Ozdemir, E., and Icli, S., Synth. Met., 2009, vol. 159, p. 2013. doi 10.1016/j.synthmet.2009.07.027

    Article  CAS  Google Scholar 

  46. Tamilivan, V., Song, M., Kang, J.-W., and Hyun, M.H., Synth. Met., 2013, vol. 176, p. 96. doi 10.1016/j.synthmet.2013.06.003

    Article  Google Scholar 

  47. Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, p. 112. doi 10.1107/S0108767307043930

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Abashev.

Additional information

Original Russian Text © A.D. Antuf’eva, V.E. Zhulanov, M.B. Dmitriev, I.G. Mokrushin, E.V. Shklyaeva, G.G. Abashev, 2017, published in Zhurnal Obshchei Khimii, 2017, Vol. 87, No. 3, pp. 465–473.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antuf’eva, A.D., Zhulanov, V.E., Dmitriev, M.B. et al. New nitrogen heterocycles containing a ferrocene fragment: Optical and physicochemical properties. Russ J Gen Chem 87, 470–478 (2017). https://doi.org/10.1134/S1070363217030161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363217030161

Keywords

Navigation