Russian Journal of General Chemistry

, Volume 87, Issue 1, pp 66–75 | Cite as

A new ligand system containing sulfanilamide and quinazolinone fragments: Synthesis, structure, and properties

  • L. D. Popov
  • S. A. Borodkin
  • A. A. Tsaturyan
  • Yu. P. Tupolova
  • S. I. Levchenkov
  • V. V. Minin
  • A. S. Burlov
  • Yu. V. Revinskii
  • I. N. Shcherbakov
  • E. A. Raspopova
Article

Abstract

A new Schiff base ligand, 4-methyl-N-{2-[(2-methyl-4-oxo-3,4-dihydroquinazolin-3-yl)iminomethyl]-phenyl}benzenesulfonamide (L), and its complexes with transition metals [Cd(L)2], [Zn(L)2], and [CuLOAc] have been synthesized. The structure and electronic properties of the ligand have been studied by quantum chemical methods, and its zinc and cadmium complexes have been found to exhibit luminescence properties.

Keywords

metal complexes Schiff base NMR spectroscopy quantum chemical calculations electronic spectroscopy luminescence spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mashkovskii, M.D., Lekarstvennye sredstva (Medicines), Moscow: Novaya Volna, 2012, 16th ed.Google Scholar
  2. 2.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Suponitskii, K.Yu., Burlov, A.S., Beloborodov, S.S., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 2013, vol. 39, no. 4, p. 342. doi 10.1134/S1070328413040106CrossRefGoogle Scholar
  3. 3.
    Popov, L.D., Tupolova, Yu.P., Lukov, V.V., Shcherbakov, I.N., Burlov, A.S., Levchenkov, S.I., Kogan, V.A., Lysenko, K.A., and Ivannikova, E.V., Inorg. Chim. Acta, 2009, vol. 362, no. 6, p. 1673. doi 10.1016/j.ica.2008.08.012CrossRefGoogle Scholar
  4. 4.
    Bermejo, M.R., Vazques, M., Sanmartin, J., Garsia-Deibe, A.M., Fondo, M., and Lodeiro, C., New J. Chem., 2002, vol. 26, no. 10, p. 1365. doi 10.1039/B201433PCrossRefGoogle Scholar
  5. 5.
    Burlov, A.S., Mashchenko, S.A., Ivashchenko, O.A., Garnovskii, D.A., Uraev, A.I., Korobov, M.S., Borodkina, I.G., Chigarenko, G.G., Ponomarenko, A.G., and Garnovskii, A.D., Russ. J. Gen. Chem., 2009, vol. 79, no. 3, p. 401. doi 10.1134/S1070363209030128CrossRefGoogle Scholar
  6. 6.
    Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., Levchenkov, S.I., Pankov, I.V., Zubavichus, Ya.V., Trigub, A.L., Borodkin, G.S., Mazepina, T.A., Garnovskii, D.A., and Uraev, A.I., Russ. J. Coord. Chem., 2014, vol. 42, no. 4, p. 267. doi 10.1134/S1070328416030027CrossRefGoogle Scholar
  7. 7.
    Burlov, A.S., Vlasenko, V.G., Makarova, N.I., Lyssenko, K.A., Chesnokov, V.V., Borodkin, G.S., Vasilchenko, I.S., Uraev, A.I., Garnovskii, D.A., Metelitsa, A.V., Mukhanov, E.L., Lifintseva, T.V., and Pankov, I.V., Polyhedron, 2016, vol. 107, no. 3, p. 153. doi 10.1016/j.poly.2015.12.048CrossRefGoogle Scholar
  8. 8.
    Burlov, A.S., Vlasenko, V.G., Koshchienko, Yu.V., Garnovskii, D.A., Uraev, A.I., Metelitsa, A.V., Cheprasov, A.S., and Minkin, V.I., RU Patent no. 2 562 456, 2015; Byull. Izobret., no. 25.Google Scholar
  9. 9.
    Burlov, A.S., Mal’tsev, E.I., Vlasenko, V.G., Dmitriev, A.V., Lypenko, D.A., Garnovskii, D.A., Uraev, A.I., Borodkin, G.S., and Metelitsa, A.V., Russ. Chem. Bull., Int. Ed., 2014, vol. 63, no. 8, p. 1759. doi 10.1007/s11172-014-0664-xCrossRefGoogle Scholar
  10. 10.
    Burlov, A.S., Koshchienko, Yu.V., Vlasenko, V.G., Zubenko, A.A., Kiskin, M.A., Dmitriev, A.V., Mal’-tsev, E.I., Lypenko, D.A., and Nikolaevskii, S.A., Russ. J. Coord. Chem., 2014, vol. 40, no. 8, p. 531. doi 10.1134/S1070328414080016CrossRefGoogle Scholar
  11. 11.
    Burlov, A.S., Koshchienko, Yu.V., Kiskin, M.A., Nikolaevskii, S.A., Garnovskii, D.A., Lermontov, A.S., Makarova, N.I., Metelitsa, A.V., and Eremenko, I.L., J. Mol. Struct., 2016, vol. 1104, p. 7. doi 10.1016/j.molstruc.2015.07.056CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Mishra, G., Singh, P., Jha, K.K., Khosa, R.L., and Gupta, S.K., Chem. Sin., 2011, vol. 2, no. 4, p. 36.Google Scholar
  13. 13.
    Nanda, A.K., Ganduli, S., and Chakraborty, R., Molecules, 2007, vol. 12, no. 10, p. 2413. doi 10.3390/12102413CrossRefGoogle Scholar
  14. 14.
    Panneerselvam, P., Ahmad, B.R., Sankar, R.D., and Kumar, R.N., Eur. J. Med. Chem., 2009, vol. 44, no. 5, p. 2328. doi 10.1016/j.ejmech.2008.04.010CrossRefGoogle Scholar
  15. 15.
    Prasad, K.S., Kumar, L.S., Chandan, S., Jayalakshmi, B., and Revana-siddappa, H.D., Spectrochim. Acta, Part A, 2011, vol. 81, p. 276. doi 10.1016/j.saa.2011.06.010Google Scholar
  16. 16.
    Gudasi, K.B., Vadavi, R.S., Shenoy, R.V., Patil, S.A., and Nethaji, M., Transition Met. Chem., 2006, vol. 31, no. 1, p. 135. doi 10.1007/s11243-005-6363-6CrossRefGoogle Scholar
  17. 17.
    Gudasi, K.B., Vadavi, R.S., Shenoy, R.V., Patil, S.A., and Nethaji, M., Transition Met. Chem., 2005, vol. 30, no. 6, p. 661. doi 10.1007/s11243-005-4829-1CrossRefGoogle Scholar
  18. 18.
    Shiva, P.K., Shiva, K.L., Melvin, P., Jayalakshmi, B., and Hosakere, D.R., Biointerface Res. Appl. Chem., 2011, vol. 1, no. 4, p. 127.Google Scholar
  19. 19.
    Parker, C.A., Photoluminescence of Solutions. With Applications to Photochemistry and Analytical Chemistry, Amsterdam: Elsevier, 1968. Translated under the title Fotolyuminestsentsiya rastvorov, Moscow: Mir, 1972, p. 247.Google Scholar
  20. 20.
    Rakitin, Yu.V., Larin, G.M., and Minin, V.V., Interpretatsiya spektrov EPR koordinatsionnykh soedinenii (Interpretation of ESR Spectra of Coordination Compounds), Moscow Nauka, 1993.Google Scholar
  21. 21.
    Lebedev, Ya.S. and Muromtsev, V.I., EPR i relaksatsiya stabilizirovannykh radikalov (ESR and Relaxation of Stabilized Radicals), Moscow: Khimiya, 1972, p. 25.Google Scholar
  22. 22.
    Wilson, R. and Kivelson, D.J., Chem. Phys., 1966, vol. 44, no. 1, p. 154.Google Scholar
  23. 23.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision E.01, Wallingford CT Gaussian, 2003.Google Scholar
  24. 24.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, p. 11623. doi 10.1021/j100096a001CrossRefGoogle Scholar
  25. 25.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  26. 26.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  27. 27.
    Tsipis, A.C., Coord. Chem. Rev., 2014, vol. 272, p. 1. doi 10.1016/j.ccr.2014.02.023CrossRefGoogle Scholar
  28. 28.
    Wang, Y.-G., J. Phys. Chem. A, 2009, vol. 113, no. 41, p. 10867. doi 10.1021/jp904007jCrossRefGoogle Scholar
  29. 29.
    Furche, F. and Rappoport, D., Theor. Comput. Chem., 2005, vol. 16, p. 93. doi 10.1016/S1380-7323(05)80020-2CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. D. Popov
    • 1
  • S. A. Borodkin
    • 1
  • A. A. Tsaturyan
    • 1
  • Yu. P. Tupolova
    • 1
  • S. I. Levchenkov
    • 2
  • V. V. Minin
    • 3
  • A. S. Burlov
    • 4
  • Yu. V. Revinskii
    • 2
  • I. N. Shcherbakov
    • 1
  • E. A. Raspopova
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Physical and Organic ChemistrySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations