Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method

Abstract

Nanocrystalline bismuth orthoferrite has been synthesized under conditions of glycine-nitrate combustion. Temperatures of activation of formation and growth of BiFeO3 nanocrystals have been shown to correlate with melting temperature of surface (non-autonomous) phases. Optimal temperature of synthesis of nanocrystalline bismuth orthoferrite has been determined.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Akbashev, A.R. and Kaul, A.R., Russ. Chem. Rev., 2011, vol. 80, no. 12, p. 1159. doi 10.1070/RC2011v080n12ABEH004239

    CAS  Article  Google Scholar 

  2. 2.

    Pyatakov, A.P. and Zvezdin, A.K., Physics Uspekhi, 2012, vol. 55, no. 6, p. 557. doi 10.3367/UFNr.0182., 201206b.0593

    CAS  Article  Google Scholar 

  3. 3.

    Kalinkin, A.N., Kozhbakhteev, E.M., Polyakov, A.E., and Skorikov, V.M., Inorg. Mater., 2013, vol. 49, no. 10, p. 1031. doi 10.1134/S0020168513100038

    CAS  Article  Google Scholar 

  4. 4.

    Kalinkin, A.N., Skorikov, V.M., and Vasil’ev, A.Y., Inorg. Mater., 2014, vol. 50, no. 12, p. 1257. doi 10.1134/S0020168514120085

    CAS  Article  Google Scholar 

  5. 5.

    Saha, R., Sundaresan, A., and Rao, C.N.R., Mater. Horiz., 2014, vol. 1. p. 20. doi 10.1039/C3MH00073G

    CAS  Article  Google Scholar 

  6. 6.

    Kumari, B., Mandal, P.R., and Nath, T.K., Adv. Mat. Lett., 2014, vol. 5, no. 2, p. 84. doi 10.5185/amlett.2013.fdm.36.

    Article  Google Scholar 

  7. 7.

    Egorysheva, A.V., Kuvshinova, T.B., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Inorg. Mater., 2013, vol. 49, no. 3, p. 310. doi 10.1134/S0020168513030035

    CAS  Article  Google Scholar 

  8. 8.

    Park, J.G., Le, M.D., Jeong, J., and Lee, S., J. Phys. Condens. Matter., 2014, vol. 26, no. 43. Р. 433202. doi 10.1088/0953-8984/26/43/433202

    Google Scholar 

  9. 9.

    Sosnowska, I., Peterlin-Neumaier, T., and Streichele, E., J. Phys. (C), 1982, vol. 15, p. 4835. doi 10.1088/0022-3719/15/23/020

    CAS  Google Scholar 

  10. 10.

    Prado-Gonjal, J., Villafuerte-Castrejon, M.E., Fuentes, L., and Moran, E., Mater. Res. Bull., 2009, vol. 44., P.1734. doi 10.1016/j.materresbull.2009.03.015

  11. 11.

    Wang, J., Wei, Y., Zhang, J., Ji, L., Huang, Y., and Chen, Z., Materials Lett., 2014, vol. 124, p. 242. doi 10.1016/j.matlet.2014.03.105

    CAS  Article  Google Scholar 

  12. 12.

    Wang, L., Xu, J.-B., Gao, B., Chang, A.-M., Chen, J., Bian, L., and Song Ch.-Y., Mater. Res. Bull., 2013, vol. 48, p. 383. doi 10.1016/j.materresbull.2012.10.038

    Article  Google Scholar 

  13. 13.

    Cristobal, A.A. and Botta, P.M., Mat. Chem. Phys., 2013, vol. 139, p. 931. doi 10.1016/j.matchemphys.2013.02.058

    CAS  Article  Google Scholar 

  14. 14.

    Xu, J.-H., Ke, H., Jia, D.-Ch., Wang, W., and Zhou, Y., J. Alloys Compd., 2009, vol. 472, p. 473. doi 10.1016/j.jallcom.2008.04.090

    CAS  Article  Google Scholar 

  15. 15.

    Yasin Shami, M., Awan, M., and Anis-ur-Rehman, M.S., J. Alloys Compd., 2011, vol. 509, p. 10139. doi 10.1016/j.jallcom.2011.08.063

    Article  Google Scholar 

  16. 16.

    Di, L.J., Yang, H., Xian, T., Li, R.S., Feng, Y.C., and Feng, W.J., Ceram. Intern., 2014, vol. 40, p. 4575. doi 10.1016/j. ceramint.2013.08.134

    CAS  Article  Google Scholar 

  17. 17.

    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. doi 10.1134/S1070363213120049

    CAS  Article  Google Scholar 

  18. 18.

    Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 5, p. 696.

    CAS  Google Scholar 

  19. 19.

    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70

    CAS  Article  Google Scholar 

  20. 20.

    Ahmadzadeh, M., Ataie, A., and Mostafavi, E., J. Alloys Compd., 2015, vol. 622, p. 548. doi 10.1016/j.jallcom.2014.10.135

    CAS  Article  Google Scholar 

  21. 21.

    Egorysheva, A.V., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Inorg. Mater., 2013, vol. 49, no. 3, p. 303. doi 10.1134/S0020168513030023

    CAS  Article  Google Scholar 

  22. 22.

    Denisov, V.M., Belousova, N.V., Zhereb, V.P., Denisova, L.T., and Skorikov, V.M., Zh. Sib. Fed. Univ.: Khimiya, 2012, vol. 5, no. 2, p. 146.

    CAS  Google Scholar 

  23. 23.

    Silva, J., Reayes, A., Esparza, H., Camacho, H., and Fuentes, L., Integrated Ferroelectrics, 2011, vol. 126, p. 47. doi 10.1080/10584587.2011.574986

    CAS  Article  Google Scholar 

  24. 24.

    Ortiz-Quinonez, J., L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, p. 10306. doi 10.1021/ic400627c

    CAS  Article  Google Scholar 

  25. 25.

    Valant, M., Axelsson, A.-K., and Alford, N., Chem. Mater., 2007, vol. 19, p. 5431. doi 10.1021/cm071730

    CAS  Article  Google Scholar 

  26. 26.

    Phapale, S., Mishra, R., and Das, D., J. Nuclear Mater., 2008, vol. 373, p. 137. doi 10.1016/j.jnucmat.2007.05.036

    CAS  Article  Google Scholar 

  27. 27.

    Mikhailov, A.V., Kaul, A.R., Gribchenkova, N.A., Alikhanyan, A.S., and Kolosov, E.N., Russ. J. Phys. Chem. (A), 2011, vol. 85, no. 1, p. 26. doi 10.1134/S0036024411010183

    CAS  Article  Google Scholar 

  28. 28.

    Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., and Damjanovic, D., J. Am. Ceram. Soc., 2014, vol. 97, no. 7, p. 1993. doi 10.1111/jace.12982

    CAS  Article  Google Scholar 

  29. 29.

    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. doi 1070-3632/97/6712-1846

    CAS  Google Scholar 

  30. 30.

    Popa, M., Crespo, D., Calderon-Moreno, J.M., and Preda, S.F., J. Am. Ceram. Soc., 2007, vol. 90, p. 2723. doi 10.1111/j.1551-2916.2007.01779.x

    CAS  Article  Google Scholar 

  31. 31.

    Hardy, A., Gielis, S., Van den Rul, H., D’Haen, J., Van Bael, M.K., and Mullens, J., J. Eur. Ceram. Soc., 2009, vol. 29, p. 3007. doi 10.1016/j.jeurceramsoc.2009.05.018

    CAS  Article  Google Scholar 

  32. 32.

    Patil, K.C., Hegde, M.S., Tanu, R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.

    Google Scholar 

  33. 33.

    Paraschiv, C., Jurca, B., Ianculescu, A., and Carp, O., J. Therm. Analysis Calorim., 2008, vol. 94, no. 2, p. 411. doi 10.1007/s10973-008-9145-5

    CAS  Article  Google Scholar 

  34. 34.

    Safi, R. and Shokrollahi, H., Progress Solid State Chem., 2012, vol. 40, p. 6. doi 10.1016/j.progsolidstchem.2012.03.001

    CAS  Article  Google Scholar 

  35. 35.

    Koferstein, R., J. Alloys Compd., 2014, vol. 590, p. 324. doi 10.1016/j.jallcom.2013.12.120

    CAS  Article  Google Scholar 

  36. 36.

    Farhadi, S., Zaidi, M., J. Mol. Catal (A), 2009, vol. 299, p. 18. doi 10.1016/j.molcata.2008.10.013

    CAS  Article  Google Scholar 

  37. 37.

    Yang, J., Li, X., Zhou, J., Tang, Y., Zhang, Y., and Li, Y., J. Alloys Compd., 2011, vol. 509, p. 9271. doi 10.1016/j.jallcom., 2011.07.023

    CAS  Article  Google Scholar 

  38. 38.

    Layek, S. and Verma, H.C., Adv. Mat. Lett., 2012, vol. 3, no. 6, p. 533. doi 10.5185/amlett.2012.icnano.242

    Article  Google Scholar 

  39. 39.

    Xavier, A.R., Siriya Pushpa, K.C., Srinivas, J., and Ravichandran, A.T., Asian J. Chem., 2013, vol. 25, p. 133.

    Google Scholar 

  40. 40.

    Carvalho, T.T. and Tavares, P.B., Mater. Lett., 2008, vol. 62, p. 3984. doi 10.1016/j.matlet.2008.05.051

    CAS  Article  Google Scholar 

  41. 41.

    Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Sokolov, V.V., and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 5, no. 5, p. 866. doi 10.17586/2220-8054-2015-6-6-866-874

    Google Scholar 

  42. 42.

    Komlev, A.A. and Gusarov, V.V., Inorg. Mater., 2014, vol. 50, no. 12, p. 1247. doi 10.7868/S0002337X14120100

    CAS  Article  Google Scholar 

  43. 43.

    Gusarov, V.V., Thermochim. Acta., 1995, vol. 256, no. 2, p. 1959467. doi 10.1016/0040-6031(94)01993-Q

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. A. Lomanova.

Additional information

Original Russian Text © N.A. Lomanova, M.V. Tomkovich, V.V. Sokolov, V.V. Gusarov, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 10, pp. 1605–1612.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lomanova, N.A., Tomkovich, M.V., Sokolov, V.V. et al. Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method. Russ J Gen Chem 86, 2256–2262 (2016). https://doi.org/10.1134/S1070363216100030

Download citation

Keywords

  • bismuth orthoferrite
  • formation mechanism
  • glycine-nitrate combustion