Russian Journal of General Chemistry

, Volume 86, Issue 10, pp 2256–2262 | Cite as

Special features of formation of nanocrystalline BiFeO3 via the glycine-nitrate combustion method

  • N. A. Lomanova
  • M. V. Tomkovich
  • V. V. Sokolov
  • V. V. Gusarov
Article

Abstract

Nanocrystalline bismuth orthoferrite has been synthesized under conditions of glycine-nitrate combustion. Temperatures of activation of formation and growth of BiFeO3 nanocrystals have been shown to correlate with melting temperature of surface (non-autonomous) phases. Optimal temperature of synthesis of nanocrystalline bismuth orthoferrite has been determined.

Keywords

bismuth orthoferrite formation mechanism glycine-nitrate combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbashev, A.R. and Kaul, A.R., Russ. Chem. Rev., 2011, vol. 80, no. 12, p. 1159. doi 10.1070/RC2011v080n12ABEH004239CrossRefGoogle Scholar
  2. 2.
    Pyatakov, A.P. and Zvezdin, A.K., Physics Uspekhi, 2012, vol. 55, no. 6, p. 557. doi 10.3367/UFNr.0182., 201206b.0593CrossRefGoogle Scholar
  3. 3.
    Kalinkin, A.N., Kozhbakhteev, E.M., Polyakov, A.E., and Skorikov, V.M., Inorg. Mater., 2013, vol. 49, no. 10, p. 1031. doi 10.1134/S0020168513100038CrossRefGoogle Scholar
  4. 4.
    Kalinkin, A.N., Skorikov, V.M., and Vasil’ev, A.Y., Inorg. Mater., 2014, vol. 50, no. 12, p. 1257. doi 10.1134/S0020168514120085CrossRefGoogle Scholar
  5. 5.
    Saha, R., Sundaresan, A., and Rao, C.N.R., Mater. Horiz., 2014, vol. 1. p. 20. doi 10.1039/C3MH00073GCrossRefGoogle Scholar
  6. 6.
    Kumari, B., Mandal, P.R., and Nath, T.K., Adv. Mat. Lett., 2014, vol. 5, no. 2, p. 84. doi 10.5185/amlett.2013.fdm.36.CrossRefGoogle Scholar
  7. 7.
    Egorysheva, A.V., Kuvshinova, T.B., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Inorg. Mater., 2013, vol. 49, no. 3, p. 310. doi 10.1134/S0020168513030035CrossRefGoogle Scholar
  8. 8.
    Park, J.G., Le, M.D., Jeong, J., and Lee, S., J. Phys. Condens. Matter., 2014, vol. 26, no. 43. Р. 433202. doi 10.1088/0953-8984/26/43/433202Google Scholar
  9. 9.
    Sosnowska, I., Peterlin-Neumaier, T., and Streichele, E., J. Phys. (C), 1982, vol. 15, p. 4835. doi 10.1088/0022-3719/15/23/020Google Scholar
  10. 10.
    Prado-Gonjal, J., Villafuerte-Castrejon, M.E., Fuentes, L., and Moran, E., Mater. Res. Bull., 2009, vol. 44., P.1734. doi 10.1016/j.materresbull.2009.03.015Google Scholar
  11. 11.
    Wang, J., Wei, Y., Zhang, J., Ji, L., Huang, Y., and Chen, Z., Materials Lett., 2014, vol. 124, p. 242. doi 10.1016/j.matlet.2014.03.105CrossRefGoogle Scholar
  12. 12.
    Wang, L., Xu, J.-B., Gao, B., Chang, A.-M., Chen, J., Bian, L., and Song Ch.-Y., Mater. Res. Bull., 2013, vol. 48, p. 383. doi 10.1016/j.materresbull.2012.10.038CrossRefGoogle Scholar
  13. 13.
    Cristobal, A.A. and Botta, P.M., Mat. Chem. Phys., 2013, vol. 139, p. 931. doi 10.1016/j.matchemphys.2013.02.058CrossRefGoogle Scholar
  14. 14.
    Xu, J.-H., Ke, H., Jia, D.-Ch., Wang, W., and Zhou, Y., J. Alloys Compd., 2009, vol. 472, p. 473. doi 10.1016/j.jallcom.2008.04.090CrossRefGoogle Scholar
  15. 15.
    Yasin Shami, M., Awan, M., and Anis-ur-Rehman, M.S., J. Alloys Compd., 2011, vol. 509, p. 10139. doi 10.1016/j.jallcom.2011.08.063CrossRefGoogle Scholar
  16. 16.
    Di, L.J., Yang, H., Xian, T., Li, R.S., Feng, Y.C., and Feng, W.J., Ceram. Intern., 2014, vol. 40, p. 4575. doi 10.1016/j. ceramint.2013.08.134CrossRefGoogle Scholar
  17. 17.
    Lomanova, N.A. and Gusarov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. doi 10.1134/S1070363213120049CrossRefGoogle Scholar
  18. 18.
    Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 5, p. 696.Google Scholar
  19. 19.
    Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. doi 10.1023/B:RUGC.0000018640.30953.70CrossRefGoogle Scholar
  20. 20.
    Ahmadzadeh, M., Ataie, A., and Mostafavi, E., J. Alloys Compd., 2015, vol. 622, p. 548. doi 10.1016/j.jallcom.2014.10.135CrossRefGoogle Scholar
  21. 21.
    Egorysheva, A.V., Volodin, V.D., Ellert, O.G., Efimov, N.N., Skorikov, V.M., Baranchikov, A.E., and Novotortsev, V.M., Inorg. Mater., 2013, vol. 49, no. 3, p. 303. doi 10.1134/S0020168513030023CrossRefGoogle Scholar
  22. 22.
    Denisov, V.M., Belousova, N.V., Zhereb, V.P., Denisova, L.T., and Skorikov, V.M., Zh. Sib. Fed. Univ.: Khimiya, 2012, vol. 5, no. 2, p. 146.Google Scholar
  23. 23.
    Silva, J., Reayes, A., Esparza, H., Camacho, H., and Fuentes, L., Integrated Ferroelectrics, 2011, vol. 126, p. 47. doi 10.1080/10584587.2011.574986CrossRefGoogle Scholar
  24. 24.
    Ortiz-Quinonez, J., L., Diaz, D., Zumeta-Dube, I., Arriola-Santamaria, H., Betancourt, I., Santiago-Jacinto, P., and Nava-Etzana, N., Inorg. Chem., 2013, vol. 52, p. 10306. doi 10.1021/ic400627cCrossRefGoogle Scholar
  25. 25.
    Valant, M., Axelsson, A.-K., and Alford, N., Chem. Mater., 2007, vol. 19, p. 5431. doi 10.1021/cm071730CrossRefGoogle Scholar
  26. 26.
    Phapale, S., Mishra, R., and Das, D., J. Nuclear Mater., 2008, vol. 373, p. 137. doi 10.1016/j.jnucmat.2007.05.036CrossRefGoogle Scholar
  27. 27.
    Mikhailov, A.V., Kaul, A.R., Gribchenkova, N.A., Alikhanyan, A.S., and Kolosov, E.N., Russ. J. Phys. Chem. (A), 2011, vol. 85, no. 1, p. 26. doi 10.1134/S0036024411010183CrossRefGoogle Scholar
  28. 28.
    Rojac, T., Bencan, A., Malic, B., Tutuncu, G., Jones, J.L., Daniels, J.E., and Damjanovic, D., J. Am. Ceram. Soc., 2014, vol. 97, no. 7, p. 1993. doi 10.1111/jace.12982CrossRefGoogle Scholar
  29. 29.
    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846. doi 1070-3632/97/6712-1846Google Scholar
  30. 30.
    Popa, M., Crespo, D., Calderon-Moreno, J.M., and Preda, S.F., J. Am. Ceram. Soc., 2007, vol. 90, p. 2723. doi 10.1111/j.1551-2916.2007.01779.xCrossRefGoogle Scholar
  31. 31.
    Hardy, A., Gielis, S., Van den Rul, H., D’Haen, J., Van Bael, M.K., and Mullens, J., J. Eur. Ceram. Soc., 2009, vol. 29, p. 3007. doi 10.1016/j.jeurceramsoc.2009.05.018CrossRefGoogle Scholar
  32. 32.
    Patil, K.C., Hegde, M.S., Tanu, R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008.CrossRefGoogle Scholar
  33. 33.
    Paraschiv, C., Jurca, B., Ianculescu, A., and Carp, O., J. Therm. Analysis Calorim., 2008, vol. 94, no. 2, p. 411. doi 10.1007/s10973-008-9145-5CrossRefGoogle Scholar
  34. 34.
    Safi, R. and Shokrollahi, H., Progress Solid State Chem., 2012, vol. 40, p. 6. doi 10.1016/j.progsolidstchem.2012.03.001CrossRefGoogle Scholar
  35. 35.
    Koferstein, R., J. Alloys Compd., 2014, vol. 590, p. 324. doi 10.1016/j.jallcom.2013.12.120CrossRefGoogle Scholar
  36. 36.
    Farhadi, S., Zaidi, M., J. Mol. Catal (A), 2009, vol. 299, p. 18. doi 10.1016/j.molcata.2008.10.013CrossRefGoogle Scholar
  37. 37.
    Yang, J., Li, X., Zhou, J., Tang, Y., Zhang, Y., and Li, Y., J. Alloys Compd., 2011, vol. 509, p. 9271. doi 10.1016/j.jallcom., 2011.07.023CrossRefGoogle Scholar
  38. 38.
    Layek, S. and Verma, H.C., Adv. Mat. Lett., 2012, vol. 3, no. 6, p. 533. doi 10.5185/amlett.2012.icnano.242CrossRefGoogle Scholar
  39. 39.
    Xavier, A.R., Siriya Pushpa, K.C., Srinivas, J., and Ravichandran, A.T., Asian J. Chem., 2013, vol. 25, p. 133.Google Scholar
  40. 40.
    Carvalho, T.T. and Tavares, P.B., Mater. Lett., 2008, vol. 62, p. 3984. doi 10.1016/j.matlet.2008.05.051CrossRefGoogle Scholar
  41. 41.
    Popkov, V.I., Almjasheva, O.V., Nevedomskiy, V.N., Sokolov, V.V., and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2015, vol. 5, no. 5, p. 866. doi 10.17586/2220-8054-2015-6-6-866-874Google Scholar
  42. 42.
    Komlev, A.A. and Gusarov, V.V., Inorg. Mater., 2014, vol. 50, no. 12, p. 1247. doi 10.7868/S0002337X14120100CrossRefGoogle Scholar
  43. 43.
    Gusarov, V.V., Thermochim. Acta., 1995, vol. 256, no. 2, p. 1959467. doi 10.1016/0040-6031(94)01993-QCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. A. Lomanova
    • 1
  • M. V. Tomkovich
    • 1
  • V. V. Sokolov
    • 1
  • V. V. Gusarov
    • 1
  1. 1.Ioffe Physico-Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations