Skip to main content
Log in

Quantum-chemical analysis and experimental synthesis of titanium-vanadium-containing coatings on the silica surface from a mixture of TiCl4 and VOCl3 vapors

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

A process for the synthesis of a two-component vanadium-titanium-containing monolayer coating on the silica surface by treating the latter with a mixture of TiCl4 and VOCl3 vapors was considered. Quantum-chemical simulations showed that the synthesis temperature and concentrations of the reactants in the gas phase have a decisive influence on the composition and structure of the resulting coating. Based on the model predictions, two-component coatings with 0.2–0.9 ratios of the molar concentration of vanadium to that of titanium in the solid phase were synthesized. The ratio of the content of the solid-phase vanadium to titanium was shown to linearly vary with the VOCl3 to TiCl4 concentration ratio in the vapor mixture over wide temperature and concentration ranges, which allows controlling the composition of the two-component coatings being formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, E.L. and Wachs, I.E., J. Phys. Chem., 2007, vol. 111, p. 14410. doi 10.1021/jp0735482

    CAS  Google Scholar 

  2. Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow FIZMATLIT, 2003.

  3. Hamilton, N., Wolfram, T., Müller, G.T., Hävecker, M., Kröhnert, J., Carrero, C., Schomäcker, R., Trunschke, A., and Schlögl, R., Catal. Sci. Technol., 2012, vol. 2, no. 7, p. 1346. doi 10.1039/C2CY00541G

    Article  CAS  Google Scholar 

  4. Carrero, C., Kauer, M., Dinse, A., Wolfram, T., Hamilton, N., Trunschke, A., Schlögl, R., and Schomäcker, R., Catal. Sci. Technol., 2014, vol. 4, p. 786. doi 10.1039/c3cy00625e

    Article  CAS  Google Scholar 

  5. Wachs, I.E. and Kamalakanta, R., ACS Catal., 2012, vol. 2, no. 6, p. 1235. doi 10.1021/cs2005482

    Article  CAS  Google Scholar 

  6. Vining, W.C., Goodrow, A., Shrunk, J., and Bell, A.T., J. Catal., 2010, vol. 270, p. 163. doi 10.1016/j.jcat.2009.12.017

    Article  CAS  Google Scholar 

  7. Gao, X., Bare, S.R., Fierro, J.L.G., and Wachs, I.E., J. Phys. Chem. B, 1999, vol. 103, p. 618. doi 10.1021/jp983357m

    Article  CAS  Google Scholar 

  8. Segura, Y., Cool, P., Van Der Voort, P., Mees, F., Meynen, V., and Vansant, E.F., J. Phys. Chem. B, 2004, vol. 108, no. 12, p. 3794. doi 10.1021/jp036259w

    Article  CAS  Google Scholar 

  9. Keranen, J., Guimon, C., Auroux, A., Iiskola, E.I., and Niinisto, L., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 5333. doi 10.1039/B307902C

    Article  Google Scholar 

  10. Kol’tsov, S.I., Khimicheskoe konstruirovanie tverdykh tel (Chemical Design of Solids), Leningrad Leningr. Tekhnol. Inst. im. Lensoveta, 1990.

    Google Scholar 

  11. Suntola, T., Appl. Surf. Sci., 1996, vol. 100, p. 391. doi 10.1016/0169-4332(96)00306-6

    Article  Google Scholar 

  12. Malygin, A.A., Russ. J. Gen. Chem., 2002, vol. 72, no. 4, p. 575. doi 10.1023/A:1016344516638

    Article  CAS  Google Scholar 

  13. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Phys. Chem., 2009, vol. 83, no. 4, p. 646. doi 10.1134/S003602440904219

    Article  Google Scholar 

  14. Aleskovskii, V.B., Khimiya nadmolekulyarnykh soedinenii (Chemistry of Supramolecular Compounds), St. Petersburg Sankt-Peterb. Gos. Univ., 1996.

    Google Scholar 

  15. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry, New York Wiley, 1979.

    Google Scholar 

  16. Kol’tsov, S.I. and Aleskovskii, V.B., Zh. Fiz. Khim., 1968, vol. 17, no. 5, p. 1210.

    Google Scholar 

  17. Zhuravlev, L.T., Colloids Surf., A, 2000, vol. 173, p. 1. doi 10.1016/S0927-7757(00)00556-2

    Article  CAS  Google Scholar 

  18. Lygin, V.I., Ross. Khim. Zh., 2002, vol. 46, no. 3, p. 12.

    CAS  Google Scholar 

  19. Zhuravlev, L.T., Langmuir, 1987, vol. 3, no. 3, p. 316. doi 10.1021/la00075a004

    Article  CAS  Google Scholar 

  20. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Appl. Chem., 2007, vol. 80, no. 12, p. 2057. doi 10.1134/S107042720712011X

    Article  CAS  Google Scholar 

  21. Kol’tsov, S.I. and Aleskovskii, V.B., Silikagel’, ego stroenie i khimicheskie svoistva (Silica Gel Structure and Chemical Properties), Leningrad: Goskhimizdat, 1963.

    Google Scholar 

  22. Gukova, A.N., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1168. doi 10.1134/S1070363210060204

    Article  CAS  Google Scholar 

  23. Evdokimov, A.V., Malygin, A.A., and Kol’tsov, S.I., Zh. Obshch. Khim., 1987, vol. 57, no. 10, p. 2191.

    CAS  Google Scholar 

  24. Lygin, V.I., Russ. J. Phys. Chem., 2006, vol. 80, no. 2, p. 304. doi 10.1134/S0036024406020361

    Article  CAS  Google Scholar 

  25. Ugliengo, P. and Garrone, E., J. Mol. Catal., 1989, vol. 54, no. 3, p. 439. doi 10.1016/0304-5102(89)80158-0

    Article  CAS  Google Scholar 

  26. Gorban’, A.N., Kaganovich, B.M., and Filippov, S.P., Termodinamicheskie ravnovesiya i ekstremumy: Analiz oblastei dostizhimosti i chastichnykh ravnovesii v fizikokhimicheskikh i tekhnicheskikh sistemakh (Thermodynamic Equilibria and Extrema: Analysis of Attainability Regions and Partial Equilibria in Physicochemical and Technical Systems), Novosibirsk Nauka, 2001.

    Google Scholar 

  27. Furman, A.A., Neorganicheskie khloridy (Inorganic Chlorides), Moscow Khimiya, 1980.

    Google Scholar 

  28. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1176. doi 10.1134/S1070363210060216

    Article  CAS  Google Scholar 

  29. Malygin, A.A., Volkova, A.I., Kol’tsov, S.I., and Aleskovskii, V.B., Zh. Obshch. Khim., 1973, vol. 43, no. 7, p. 1436.

    CAS  Google Scholar 

  30. Ek, S., Root, A., Peussa, M., and Niinisto, L., Thermochim. Acta, 2001, vol. 379, no. 1, p. 201. doi 10.1016/S0040-6031(01)00618-9

    Article  CAS  Google Scholar 

  31. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford CT,2009.

    Google Scholar 

  32. Becke, A., J. Chem. Phys., 1993, vol. 98, p. 5648. doi 10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Ditchfield, R., Hehre, W.J., and Pople, J., J. Chem. Phys., 1971, vol. 54, p. 724. doi 10.1063/1.1674902

    Article  CAS  Google Scholar 

  34. Dubrovenskii, S.D. and Malygin, A.A., Ross. Khim. Zh., 2009, vol. 53, no. 2, p. 98.

    Google Scholar 

  35. Ignatov, S.K., Bagatur’yants, A.A., Razuvaev, A.G., Alfimov, M.V., Molotovshchikova, M.B., and Dodonov, V.A., Izv. Ross. Akad. Nauk, Ser. Khim., 1998, no. 7, p. 1296.

    Google Scholar 

  36. Evdokimov, A.V., Malygin, A.A., and Kol’tsov, S.I., Zh. Prikl. Khim., 1986, vol. 59, no. 3, p. 650.

    CAS  Google Scholar 

  37. Evdokimov, A.V., Malygin, A.A., and Kol’tsov, S.I., Zh. Obshch. Khim., 1987, vol. 57, no. 4, p. 749.

    CAS  Google Scholar 

  38. Charlot, G., Les méthodes de la chimie analytique: analyse quantitative minérale, Paris Masson et Cie, 1966.

    Google Scholar 

  39. GOST (State Standard) 19863.15-91: Titanium-Nickel Alloy: Method for the Determination of Titanium, Moscow: Izd. Standartov, 1991.

  40. Frumina, N.S., Lisenko, I.F., and Chernova, M.A., Khlor (Chlorine), Moscow Nauka, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Dubrovenskii.

Additional information

Original Russian Text © E.O. Drozdov, A.N. Gukova, S.D. Dubrovenskii, A.A. Malygin, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 9, pp. 1551–1561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, E.O., Gukova, A.N., Dubrovenskii, S.D. et al. Quantum-chemical analysis and experimental synthesis of titanium-vanadium-containing coatings on the silica surface from a mixture of TiCl4 and VOCl3 vapors. Russ J Gen Chem 86, 2113–2123 (2016). https://doi.org/10.1134/S1070363216090231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216090231

Keywords

Navigation