Russian Journal of General Chemistry

, Volume 86, Issue 9, pp 2075–2080 | Cite as

2,6-diformyl-4-tert-butylphenol bis-ferrocenoylhydrazone and binuclear copper(II) complexes on its basis

  • S. I. Levchenkov
  • E. A. Raspopova
  • A. N. Morozov
  • L. D. Popov
  • Yu. V. Titova
  • M. O. Gorbunova
  • I. N. Shcherbakov
Article

Abstract

2,6-Diformyl-4-tert-butylphenol bis-ferrocenoylhydrazone (1, H3L) and binuclear copper(II) complexes on its basis [Cu2(H2L)(OH)] (2), [Cu2(H2L)Cl3]·(3), and [Cu2(H2L)(OH)]·2NO3 (4) have been synthesized and investigated. Tautomerism of bis-hydrazone (1) has been studied.

Keywords

ferrocenoylhydrazones electronic spectroscopy tautomerism density functional theory binuclear complexes exchange interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Connelly, N.G. and Geiger, W.E., Chem. Rev., 1996, vol. 96, no. 2, p. 877. doi 10.1021/cr940053xCrossRefGoogle Scholar
  2. 2.
    Beer, P.D. and Sikanyika, H., Polyhedron., 1990, vol. 9, no. 8, p. 1091. doi 10.1016/S0277-5387(00)81299-1CrossRefGoogle Scholar
  3. 3.
    Millan, L., Fuentealba, M., Manzur, C., Carrillo, D., Faux, N., Caro, B., Robin-Le Guen, F., Sinbandhit, S., Ledoux-Rak, I., and Hamon, J.-R., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 6, p. 1131. doi 10.1002/ejic.200500955CrossRefGoogle Scholar
  4. 4.
    Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Togni, A. and Hayashi, T., Eds., Weinheim VCH Publishers, 1995.Google Scholar
  5. 5.
    Van Staveren, D.R. and Metzler-Nolte, N., Chem. Rev., 2004, vol. 104, no. 12, p. 5931. doi 10.1021/cr0101510CrossRefGoogle Scholar
  6. 6.
    Ornelas, C., New J. Chem., 2011, vol. 35, no. 10, p. 1973. doi 10.1039/C1NJ20172GCrossRefGoogle Scholar
  7. 7.
    Mahajan, A., Kremer, L., Louw, S., Guéradel, Y., Chibale, K., and Biot, C., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 10, p. 2866. doi 10.1016/j.bmcl.2011.03.082CrossRefGoogle Scholar
  8. 8.
    Maguene, G.M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D.A., Bousquet, T., Maugein, J., Lebibi, J., and Pélinski, L., Eur. J. Med. Chem., 2011, vol. 46, no. 1, p. 31. doi 10.1016/j.ejmech.2010.10.004CrossRefGoogle Scholar
  9. 9.
    Robson, R., Inorg. Nucl. Chem. Lett., 1970, vol. 6, no. 2, p. 125. DOI:10.1016/0020-1650(70)80324-5CrossRefGoogle Scholar
  10. 10.
    Robson, R., Aust. J. Chem., 1970, vol. 23, no. 11, p. 2217. doi 10.1071/CH9702217cCrossRefGoogle Scholar
  11. 11.
    Kogan, V.A. and Lukov, V.V., Russ. J. Coord. Chem., 2004, vol. 30, no. 3, p. 205. doi 10.1023/B:RUCO.0000022119.12007.9cCrossRefGoogle Scholar
  12. 12.
    Kogan, V.A., Lukov, V.V., and Shcherbakov, I.N., Russ. J. Coord. Chem., 2010, vol. 36, no. 6, p. 401. doi 10.1134/S1070328410060011CrossRefGoogle Scholar
  13. 13.
    Kahn, O., Acc. Chem. Res., 2000, vol. 33, no. 10, p. 647. doi 10.1021/ar9703138CrossRefGoogle Scholar
  14. 14.
    Leuenberger, M.N. and Loss, D., Nature, 2001, vol. 410, p. 789. doi 10.1038/35071024CrossRefGoogle Scholar
  15. 15.
    Kalinnikov, V.T., Rakitin, Yu.I., and Novotortsev, V.V., Russ. Chem. Rev., 2003, vol. 72, no. 12, p. 995. doi 10.1070/RC2003v072n12ABEH000851CrossRefGoogle Scholar
  16. 16.
    Lukov, V.V., Kogan, V.A., Levchenkov, S.I., Shcherbakov, I.N., and Popov, L.D., Russ. J. Coord. Chem., 2015, vol. 41, no. 1, p. 1. doi 10.1134/S1070328415010054CrossRefGoogle Scholar
  17. 17.
    Sakamoto, M., Itose, S., Ishimori, T., Matsumoto, N., Okawa, H., and Kida, S., J. Chem. Soc., Dalton Trans., 1989, no. 11, p. 2083. doi 10.1039/DT9890002083CrossRefGoogle Scholar
  18. 18.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Tupolova, Yu.P., Zubenko, A.A., Melkozerova, I.E., Lukov, V.V., and Kogan, V.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 9, p. 1853. doi 10.1134/S1070363210090239CrossRefGoogle Scholar
  19. 19.
    Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova, Yu.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, p. 643. doi 10.1070/RC2009v078n07ABEH003890CrossRefGoogle Scholar
  20. 20.
    Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg Nauka, 1994.Google Scholar
  21. 21.
    Kahn, O., Molecular Magnetism, New York VCH Publishers, 1993.Google Scholar
  22. 22.
    Venegas-Yazigi, D., Aravena, D., Spodine, E., Ruiz, E., and Alvarez, S., Coord. Chem. Rev., 2010, vol. 254, nos. 17–18, p. 2086. doi 10.1016/j.ccr.2010.04.003CrossRefGoogle Scholar
  23. 23.
    Ma, Y.-X., Huang, G.-S., Jin, P., and Han, X.-J., Bull. Soc. Chim. Belg., 1991, vol. 100, no. 3, p. 205. doi 10.1002/bscb.19911000306Google Scholar
  24. 24.
    Lindoy, L.F., Meehan, G.V., and Svenstrup, N., Synthesis, 1998, no. 7, p. 1029. doi 10.1055/s-1998-2110CrossRefGoogle Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision D.01, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  26. 26.
    Zhurko, G.A. adn Zhurko, D.A., Chemcraft ver. 1.6 (build 338). http://www.chemcraftprog.comGoogle Scholar
  27. 27.
    Cammi, R., Mennucci, B., and Tomasi, J., J. Phys. Chem. A, 2000, vol. 104, no. 23, p. 5631. doi 10.1021/jp000156lCrossRefGoogle Scholar
  28. 28.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. doi 10.1021/j100096a001CrossRefGoogle Scholar
  29. 29.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. doi 10.1063/1.464913CrossRefGoogle Scholar
  30. 30.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785. doi 10.1103/PhysRevB.37.785CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. I. Levchenkov
    • 1
    • 2
  • E. A. Raspopova
    • 2
  • A. N. Morozov
    • 2
  • L. D. Popov
    • 2
  • Yu. V. Titova
    • 2
  • M. O. Gorbunova
    • 2
    • 3
  • I. N. Shcherbakov
    • 2
  1. 1.Southern Scientific Center of Russian Academy of SciencesRostov-on-DonRussia
  2. 2.Chemical DepartmentSouthern Federal UniversityRostov-on-DonRussia
  3. 3.Rostov State Medical UniversityRostov-on-DonRussia

Personalised recommendations