Skip to main content
Log in

Influence of phosphorus concentration on the state of the surface layer of Pd–P hydrogenation catalysts

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Phase composition and surface layer state of the Pd–P hydrogenation catalyst formed at various P/Pd ratios from Pd(acac)2 and white phosphorus in a hydrogen atmosphere were determined. Palladium on the catalyst surface is mainly in two chemical states: as Pd(0) clusters and as palladium phosphides. As the P/Pd ratio increases, the fraction and size of palladium clusters decrease, and also the phase composition of formed palladium phosphides changes: Pd3P0.8 → Pd5P2 → PdP2. The causes of the modifying action of phosphorus on the properties of palladium catalysts for hydrogenation of unsaturated compounds were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carenco, S., Portehault, D., Boissière, C., Mézailles, N., and Sanchez, C., Chem. Rev., 2013., vol. 113, p. 7981. doi 10.1021/cr400020d

  2. Alexander, A.-M. and Hargreaves, J.S.J., Chem. Soc. Rev., 2010, vol. 39, p. 4388. doi 10.1039/b916787k

    Article  CAS  Google Scholar 

  3. Prins, R. and Bussell, M.E., Catal. Lett., 2012., vol. 142, p. 1413. doi 10.1007/s10562-012-0929-7

    Article  CAS  Google Scholar 

  4. Oyama, S.T., Gott, T., Zhao, H., and Lee, Y-K., Catalysis Today, 2009, vol. 143, p. 94. doi 10.1016/j.cattod.2008.09.019

    Article  CAS  Google Scholar 

  5. Yang, S. and Prins, R., Chem. Comm., 2005, p. 4178. doi 10.1039/b507940c

    Google Scholar 

  6. Liu, P., Rodriguez, J.A., Asakura, T., Gomes, T, and Nakamura, K., J. Phys. Chem. (B), 2005, vol. 109, p. 4575. doi 10.1021/jp044301x

    Article  CAS  Google Scholar 

  7. Guan, Q., Cheng, X., Li, R., and Li, W., J. Catal., 2013, vol. 299, p. 1. doi 10.1016/j.jcat.2012.11.008

    Article  CAS  Google Scholar 

  8. Bowker, R.H. Smith, M.C., Carrillo, B.A., and Bussell, M.E., Top. Catal., 2012, vol. 55, p. 999. doi 10.1007/s11244- 012-9887-y

    Article  CAS  Google Scholar 

  9. Huang, X., Dong, X., Huang, H., Yue, L., Zhu, Z., and Dai, J., J. Nanopart. Res., 2014, vol. 16, p. 2785. doi 10.1007/s11051-014-2785-4

    Article  Google Scholar 

  10. Bui, P, Cecilia, J.A., Oyama, S.T., Takagaki, A., Infantes-Molina, A., Zhao, H., Li, D., Rodriguez-Castellun, E., and Jimenez-Lopez, A., J. Catal., 2012, vol. 294, p. 184. doi 10.1016/j.jcat.2012.07.021

    Article  CAS  Google Scholar 

  11. Cecilia, J.A., Jimenez-Moralesa, I., Infantes-Molin, A., Rodriguez-Castellon, E., and Jimenez-Lopez, A., J. Mol. Catal. (A), 2013, vol. 368., p. 78. doi 10.1016/j.molcata.2012.11.017

    Article  Google Scholar 

  12. Kanda, Y., Temma, C., Nakata, K., Kobayashi, T., Sugioka, M., and Uemichi, Y., Appl. Catal. (A), 2010, vol. 386, p. 171. doi 10.1016/j.apcata.2010.07.045

    Article  CAS  Google Scholar 

  13. Savithra, G.H.L., Bowker, R.H., Carrillo, B.A., Bussell, M.E., and Brock, S.L., ACS Appl. Mater. and Interfaces, 2013, vol. 5, p. 5403. doi 10.1021/am402003g

    Article  Google Scholar 

  14. Sweeney, C.M., Stamm, K.L., and Brock, S.L., J. Alloys Products Compd., 2008, vol. 448, p. 122. doi 10.1016/j.jallcom.2006.10.035

    Article  CAS  Google Scholar 

  15. Muetterties, E.L., and Sauer, J.C., J. Am. Chem. Soc. 1974, vol. 96, p. 3410. doi 10.1021/ja00818a012

    Article  CAS  Google Scholar 

  16. Schmidt, F.K., Belykh, L.B., and Goremyka, T.V., Kinet. Katal., 2003, vol. 44, no. 5, p. 623. doi 10.1023/A:1026185804608

    Article  CAS  Google Scholar 

  17. Belykh, L.B., Goremyka, T.V., Belonogova, L.N., and Schmidt, F.K., J. Mol Catal. (A), 2005, vol. 231, p. 53. doi 10.1016/j.molcata.2004.12.023

    Article  CAS  Google Scholar 

  18. Belykh, L.B., Skripov, N.I., Belonogova, L.N., Umanets, V.A., and Schmidt, F.K., Kinet. Katal., 2010, vol. 51, no. 1, p. 42. doi 10.1134/S0023158410010088

    Article  CAS  Google Scholar 

  19. Zhao, M., and Crooks, R.M., Angew. Chem., 1999, vol. 111, p. 375. doi DOI/(SICI)1521-3773(19990201) 38:3<364::AID-ANIE364>3.0.CO; 2-L

    Article  Google Scholar 

  20. Dhas, N.A. and Gedanken, A., J. Mater. Chem., 1998, vol. 8, p. 445. doi 10.1039/A706100E

    Article  CAS  Google Scholar 

  21. Bönnemann, H., Braun, G., Brijoux, W., Brinkmann, R., Tilling, A.S., Seevogel, K., and Siepen, K., J. Organomet. Chem., 1996, vol. 520, p. 143. doi 10.1016/0022-328X (96)06273-0

    Article  Google Scholar 

  22. Belykh, L.B., Goremyka, T.V., Skripov, N.I., Umanets, V.A., and Schmidt, F. K., Kinet. Katal., 2006, vol. 47, no. 3, p. 367. doi 10.1134/S0023158406030074.

    Article  CAS  Google Scholar 

  23. Schmid, G., West, H., Malm, J-O., Bovin, J-O., and Grenthe, C., Chem. Eur. J., 1996, vol. 2, p. 1099. doi 10.1002/chem.19960020910

    Article  CAS  Google Scholar 

  24. Skripov, N.I., Belykh, L.B., Belonogova, L.N., Umanets, V.A., Ryzhkovich, E.N., and Schmidt, F.K., Kinet. Katal., 2010, vol. 51, no. 5, p. 714. doi 10.1134/S0023158410050137

    Article  CAS  Google Scholar 

  25. Belykh L.B., Skripov, N.I., Belonogova, L.N., Umanets, V.A., Stepanova, T.P., and Schmidt, F.K., Kinet. Katal., 2011, vol. 52, no. 5, p. 702. doi 10.1134/S002315841105003X

    Article  CAS  Google Scholar 

  26. Belykh L.B., Skripov, N.I., Akimov, V.V., Tauson, V.L., Stepanova, T.P., and Schmidt, F.K., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2260. doi 10.1134/S1070363213120062

    Article  CAS  Google Scholar 

  27. Tsyrul’nikov, P.G., Afonasenko, T.N., Koshcheev, S.V., and Boronnin, A.I., Kinet. Katal., 2007, vol. 48, no. 5, p. 728. doi 10.1134/S0023158407050187

    Article  Google Scholar 

  28. Domashevskaya, E.P., Ryabtsev, S.V., Turishev, S.Yu., Kashkarov, V.M., Yurakov, Yu.A., Chuvenkova, O.A., and Shchukarev, A.V., Condens. Sredy i Mezhfaznye Granitsy, 2008, vol. 10, no. 2, p. 98.

    Google Scholar 

  29. Successful Design of Catalysts, Inui, T., Ed., Amsterdam: Elsevier Science Publishers, 1988, p. 3.

  30. Grosvenor, A.P., Cavell, R.G., and Mar, A., J. Solid State Chem., 2008, vol. 181, p. 2549. doi 10.1016/j.jssc.2008.06.034

    Article  CAS  Google Scholar 

  31. Blanchard, P.E.R., Grosvenor, A.P., Cavell, R.G., and Mar, A., Chem. Mater., 2008, vol. 20, no. 22, p. 7081. doi 10.1021/cm802123a

    Article  CAS  Google Scholar 

  32. Okamoto, H., J. Phase Equilibria, 1994, vol. 15, no. 1, p. 58. doi 10.1007/BF02667684

    Article  CAS  Google Scholar 

  33. Gabasch, H., Unterberger, W., Hayek, K., Klotzer, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlog, R., Han, J., Ribeiro, F.H., Aszalos-Kiss, B., Curtin, T., and Zemlyanov, D., Surface Sci., 2006, vol. 600, p. 2980. doi 10.1016/j.susc.2006.05.029

    Article  CAS  Google Scholar 

  34. Wu, T., Kaden, W.E., Kunkel, W.A., and Anderson, S.L., Surface Sci., 2009, vol. 603, p. 2764. doi 10.1016/j.susc.2009.07.014

    Article  CAS  Google Scholar 

  35. Wertheim, G.K., Z. Physik (D), 1989, vol. 12, nos. 1–4, p. 319. doi 10.1007/BF01426965

    CAS  Google Scholar 

  36. Mason, M. G., Phys. Rev. (B), 1983, vol. 27, no. 2, p. 748. doi 10.1103/PhysRevB.27.748

    Article  CAS  Google Scholar 

  37. Sun, H., Xu, J., Fu, G., Mao, X., Zhang, L., Chen, Y., Zhou, Y., Lu, T., and Tang, Y., Electrochim. Acta, 2012, vol. 59, p. 279. doi 10.1016/j.electacta.2011.10.092

    Article  CAS  Google Scholar 

  38. Konno, H. and Yamamoto, Y., Bull. Chem. Soc. Japan, 1987, vol. 60, p. 2561. doi 10.1246/bcsj.60.2561

    Article  CAS  Google Scholar 

  39. Carley, A.F., Davies, P.R., and Mariotti, G.G., Surface Sci., 1998, vol. 401, p. 400. doi 10.1016/S0039-6028 (98)00046-6

    Article  CAS  Google Scholar 

  40. Pomogailo, A.D., Rosenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Nanoparticles of Metals in Polymers), Moscow Khimiya, 2000.

    Google Scholar 

  41. Ott, L.S. and Finke, R.G., Coord. Chem. Rev., 2007, vol. 251, p. 1075. doi 10.1016/j.ccr.2006.08.016

    Article  CAS  Google Scholar 

  42. Stakheyev, A.Yu., Mashkovskii, I.S., Baeva, G.N., and Telegina, N.S., Ross. Khim. Zh., 2009, vol. 53, no. 2, p. 68.

    Google Scholar 

  43. Gordon, A.J. and Ford, R.A., Handbook of Practical Data, Techniques, and References, New York Wiley, 1972.

    Google Scholar 

  44. Mitchell, J. and Smith, D. M., Aquametry, New York Wiley, 1977.

    Google Scholar 

  45. US Patent 3474464, 1969.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Belykh.

Additional information

Original Russian Text © L.B. Belykh, N.I. Skripov, T.P. Sterenсhuk, V.V. Akimov, V.L. Tauson, F.K. Schmidt, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 9, pp. 1454–1465.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, L.B., Skripov, N.I., Sterenchuk, T.P. et al. Influence of phosphorus concentration on the state of the surface layer of Pd–P hydrogenation catalysts. Russ J Gen Chem 86, 2022–2032 (2016). https://doi.org/10.1134/S1070363216090073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216090073

Keywords

Navigation