Skip to main content
Log in

Hydrazine: Structural features and conformational preference in nanotubes

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Investigation of structural features and conformational transformations of the hydrazine molecule in open single walled carbon nanotubes using the hybrid DFT method PBE/3ζ revealed in most cases the contraction of the N–N bond length, decrease in its order, generation of a positive or negative charge on the encapsulated molecule and a substantial decrease in the rotation barrier about the N–N bond caused by stabilization of the local maximum (anti-form) apparently, due to attenuation of the hyperconjugation effect in the hydrazine molecule. In one of clusters this form becomes the global minimum on the potential energy surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Britz, D.A. and Khlobystov, A.N., Chem. Soc. Rev., 2006, vol. 35, p. 637. doi 10.1039/b507451g

    Article  CAS  Google Scholar 

  2. Liang, W.Z., Yang, J., and Sun, J., Appl. Phys. Lett., 2005, vol. 86, no. 22, p. 223113. doi 10.1063/1.1941476

    Article  Google Scholar 

  3. Balasubramani, S.G., Singh, D., and Swathi, R.S., J. Chem. Phys., 2014, vol. 141, p. 184304. doi 10.1063/1.4900963

    Article  Google Scholar 

  4. Castillo Á., Lee, L., and Greer, A., J. Phys. Org. Chem., 2012, vol. 25, p. 42. doi 10.1002/poc.1966

    Article  CAS  Google Scholar 

  5. Fan, J., Chamberlain, T.W., Wang, Y., Yang, S., Blake, A.J., Schröder, M., and Khlobystov, A.N., Chem. Commun., 2011, vol. 47, no. 20, p. 5696. doi 10.1039/C1CC10427F

    Article  CAS  Google Scholar 

  6. Dargouthi, S., Boughdiri, S., Tangour, B., Acta Chim. Slov., 2015, vol. 62, p. 445. doi 10.17344/acsi.2014.1080

    Article  CAS  Google Scholar 

  7. Großmann, D., Dreier, A., Lehmann, C.W., Grünert, W., Micropor. Mesopor. Mater., 2015, vol. 202, p. 189. doi 10.1016/j. micromeso.2014.09.057

    Article  Google Scholar 

  8. Ilie, A., Bendall, J.S., Roy, D., Philp, E., and Green, M.L.H., J. Phys. Chem. (B), 2006, vol. 110, no. 28, p. 13848. doi 10.1021/jp062937d

    Article  CAS  Google Scholar 

  9. Huang, S.-P., Cheng, W.-D., Hu, J.-M., Xie, Z., Hu, H., and Zhang, H., J. Chem. Phys., 2008, vol. 129, p. 174108. doi 10.1063/1.3006425

    Article  Google Scholar 

  10. Wang, N. and Guan, L., Nanoscale, 2010, vol. 2, p. 893. doi 10.1039/C0NR00005A

    Article  CAS  Google Scholar 

  11. Ravinder, P., Kumar, R.M., and Subramanian, V., J. Phys. Chem. (A), 2012, vol. 116, no. 23, p. 5519. doi 10.1021/jp210668b

    Article  CAS  Google Scholar 

  12. Chen, S., Kobayashi, K., Miyata, Y., Imazu, N., Saito, T., Kitaura, R., and Shinobara, H., J. Am. Chem. Soc., 2009, vol. 131, no. 41, p. 14850. doi 10.1021/ja904283d

    Article  CAS  Google Scholar 

  13. Matson, M.L., Villa, C.H., Ananta, J.S., Law, J.J., Scheinberg, D. A., Wilson, L.J., J. Nucl. Med., 2015, vol. 56, no. 6, p. 897. doi 10.2967/jnumed.115.158311

    Article  CAS  Google Scholar 

  14. Adisa, O.O., Cox, B.J., and Hill, J.M., Micro & Nano Lett., 2010, vol. 5, no. 5, p. 291. doi 10.1049/mnl.2010.0075

    Article  CAS  Google Scholar 

  15. Botka, B., Füstös, M.E., Klupp, G., Kocsis, D., Székely, E., Utczás, M., Simándi, B., Botos Á., Hackl, R., and Kamarás, K., Phys. Stat. Solidi. B, 2012, vol. 249, no. 12, p. 2432. doi 10.1002/pssb.201200349

    Article  CAS  Google Scholar 

  16. Jiang, H., Nieminen, R.M., and Kauppinen, E.I., Chem. Phys. Chem., 2014, vol. 15, no. 8, p. 1660. doi 10.1002/cphc.201301200

    Google Scholar 

  17. Kigure, S., Lizumi, Y., and Okada, S., J. Phys. Chem. Japan, 2014, vol. 83, p. 124709. doi 10.7566/JPSJ.83.124709

    Article  Google Scholar 

  18. Li, L.-J., Khlobystov, A.N., Wiltshire, J.G., Briggs, G.A.D., Nicholas, R.J., Nature Mater., 2005, vol. 4, p. 481. doi 10.1038/nmat1396

    Article  CAS  Google Scholar 

  19. Lee, J., Park, T., Lee, J., and Yi, W., J. Nanosc. Nanotechn., 2013, vol. 13, no. 11, p. 7430. doi 10.1166/jnn.2013.7858

    Article  CAS  Google Scholar 

  20. Moscoso, R., Carbajo, J., and Squella, J.A., J. Chil. Chem. Soc., 2014, vol. 59, no. 2, p. 2498. doi 10.4067/S0717-97072014000200022

    Article  Google Scholar 

  21. Kamiya, K. and Okada, S., Phys. Rev. (B), 2011, vol. 83, no. 15, p. 155444. doi 10.1103/PhysRevB.83.155444

    Article  Google Scholar 

  22. Zhang, Z.S., Kang, Y., Liang, L.J., Liu, Y.C., Wu, T., and Wang, O., Biomaterials, 2014, vol. 35, no. 5, p. 1771. doi 10.1016/j. biomaterials.2013.11.041

    Article  CAS  Google Scholar 

  23. Yumura, T. and Yamashita, H., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 22668. doi 10.1039/C5CP03433G

    Article  CAS  Google Scholar 

  24. Kuwahara, R., Kudo, Y., Morisato, T., and Ohno, K., J. Phys. Chem. (A), 2011, vol. 115, no. 20, p. 5147. doi 10.1021/jp109308w

    Article  CAS  Google Scholar 

  25. Almadori, Y., Alvarez, L., Le Parc, R., Aznar, R., Fossard, F., Loiseau, A., Jousselme, B., Campidelli, S., Hermet, P., Belhboub, A., Rahmani, A., Saito, T., and Bantignies, J.-L., J. Phys. Chem. (C), 2014, vol. 118, no. 33, p. 19462. doi 10.1021/jp505804d

    CAS  Google Scholar 

  26. Joung, S.-K., Okazaki, T., Okada, S., and Lijima, S., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8118. doi 10.1039/c000102c

    Article  CAS  Google Scholar 

  27. Simon, F., Kuzmany, H., Rauf, H., Pichler, T., Bernardi, J., Peterlik, H., Korecz, L., Fülöp, F., and Jánossy, A., Chem. Phys. Lett., 2004, vol. 383, p. 362. doi 10.1016/j.cplett., 2003.11.039

    Article  CAS  Google Scholar 

  28. Manzetti, S., Adv. Manuf., 2013, vol. 1, p. 198. doi 10.1007/s40436-013-0030-5

    Article  Google Scholar 

  29. Simon, F., J. Nanosc. Nanotechn., 2007, vol. 7, nos. 4–5, p. 1197. doi 10.1166/jnn.2007.306

    Article  CAS  Google Scholar 

  30. Giménez-López, M.C., Moro, F., La Torre, A., Gómez-Garsía, C.J., Brown, P.D., Slageren, J., and Khlobystov, A.N., Nature Commun., 2011, vol. 2, p. 14. doi 10.1038/ncomms1415

    Google Scholar 

  31. Zhang, F., Pan, X., Hu, Y., Yu, L., Chen, X., Jiang, P., Zhang, H., Deng, S., Zhang, J., Bolin, T.B., Zhang, S., Huang, Y., and Bao, X., Proc. Nat. Acad. Sci., 2013, vol. 110, no. 37. P 14861. doi 10.1073/pnas.1306784110

    Google Scholar 

  32. Hilder, T.A. and Hill, J.M., Int. Conf. on Nanoscience and Nanotechnology, Melbourne, 2008, p. 109. doi 10.1109/ICONN., 2008.4639258

    Google Scholar 

  33. Dappe, Y.J., J. Phys. (D), 2014, vol. 47, p. 083001. doi 10.1088/0022-3727/47/8/083001

    Google Scholar 

  34. Gorgoll, R.M., Yücelen, E., Kumamoto, A., Shibata, N., Harano, K., and Nakamura, E., J. Am. Chem. Soc., 2015, vol. 137, no. 10, p. 3474. doi 10.1021/jacs.5b00511

    Article  CAS  Google Scholar 

  35. Harano, K., Takenaga, S., Okada, S., Niimi, Y., Yoshikai, N., Isobe, H., Suenaga, K., Kataura, H., Koshino, M., and Nakamura, E., J. Am. Chem. Soc., 2014, vol. 136, no. 1, p. 466. doi 10.1021/ja411235x

    Article  CAS  Google Scholar 

  36. Ramachandran, C. N., Fazio, D. D., Sathyamurthy, N., and Aquilanti, V., Chem. Phys. Lett., 2009, vol. 473, p. 146. doi 10.1016/j. cplett.2009.03.068

    Article  CAS  Google Scholar 

  37. Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 2, p. 313. doi 10.1134/S1070428013020231

    Article  CAS  Google Scholar 

  38. Kuznetsov, V.V., Russ. J. Org. Chem., 2013, vol. 49, no. 8, p. 1231. doi 10.1134/S107042801308023X

    Article  CAS  Google Scholar 

  39. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2334. doi 10.1134/S1070363213100190

    Article  CAS  Google Scholar 

  40. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 6, p. 1165. doi 10.1134/S1070363213060285

    Article  CAS  Google Scholar 

  41. Kuznetsov, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 10, p. 1534. doi 10.1134/S1070428014100200

    Article  CAS  Google Scholar 

  42. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 8, p. 1623. doi 10.1134/S1070363213080264

    Article  CAS  Google Scholar 

  43. Kuznetsov, V.V., Russ. J. Gen. Chem., 2013, vol. 83, no. 7, p. 1455. doi 10.1134/S1070363213070268

    Article  CAS  Google Scholar 

  44. Kobychev, V.B., Vitkovskaya, N.M., Pavlova, N.V., Schmidt, E.Yu., and Trofimov, B.A., J. Struct. Chem., 2004, vol. 45, no. 5, p. 748. doi 10.1007/s10947-005- 0054-1

    Article  CAS  Google Scholar 

  45. Song, L., Liu, M., Wu, W., and Zhang, Q., and Mo, Y., J. Chem. Theory Comput., 2005, vol. 1, no. 3, p. 394. doi 10.1021/ct049843x

    Article  CAS  Google Scholar 

  46. Lodyga, W. and Makarewicz, J., J. Chem. Phys., 2012, vol. 136, no. 17, p. 174301. doi 10.1063/1.4705267

    Article  Google Scholar 

  47. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, vol. 54, no. 3, p. 820. doi 10.1007/s11172-005- 0329-x

    Article  CAS  Google Scholar 

  48. Krasnov, K.S., Timoshinin, V.S., Danilova, T.G., and Khandozhko, S.V., Molekulyarnye postoyannye neorganicheskikh soedinenii (Molecular Constants of Inorganic Compounds), Leningrad Khimiya, 1968.

    Google Scholar 

  49. HyperChem 8.0. http://www.hyper.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kuznetsov.

Additional information

Original Russian Text © V.V. Kuznetsov, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 9, pp. 1429–1437.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.V. Hydrazine: Structural features and conformational preference in nanotubes. Russ J Gen Chem 86, 2000–2007 (2016). https://doi.org/10.1134/S1070363216090048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216090048

Keywords

Navigation