Skip to main content
Log in

Computer simulation of size effects and adsorption properties of one-wall carbon nanotubes (6,6)

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Structure, electric and adsorption properties of carbon open-end nanotubes of (6,6) chirality consisting of 5–19 segments were studied by quantum-chemical methods AM1, PM3, LSDA/3-21G, B3LYP/6-31G. The size effects and adsorption properties of nanotubes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Nature, 1991, vol. 354, p. 56. DOI: 10.1038/354056a0.

    Article  CAS  Google Scholar 

  2. Baughman, R.H., Zakhidov, A.A., and de Heer, W.A., Science, 2002, vol. 297, no. 5582, p. 787. DOI: 10.1126/science.1060928.

    Article  CAS  Google Scholar 

  3. D’yachkov, P.N., Elektronnye svoistva i primenenie nano-trubok (Electronic Properties and Application of Nanotubes), Moscow: Binom Laboratorija Znanii, 2011.

    Google Scholar 

  4. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998.

    Book  Google Scholar 

  5. Kharlamova, M.V., Phys. Usp., 2013, vol. 56, no. 11, p. 1047. DOI: 10.3367/UFNr.0183.201311a.1145.

    Article  CAS  Google Scholar 

  6. Badamshina, E.R., Gafurova, M.P., and Estrin, Ya.I., Russ. Chem. Rev., 2010, vol. 79, no. 11, p. 945. DOI: 10.1070/RC2010v079n11ABEH004114.

    Article  CAS  Google Scholar 

  7. Irzhak, V.I., Russ. Chem. Rev., 2011, vol. 80, no. 8, p. 787. DOI: 10.1070/RC2011v080n08ABEH004196.

    Article  CAS  Google Scholar 

  8. McNally, T. and Potschke, P., Polymer Carbon Nanotube Composites: Preparation, Properties, and Applications, Cambridge: Woodhead Publishing, 2011.

    Book  Google Scholar 

  9. Hou, S., Shen, Z., Zhao, X., and Xue, Z., Chem. Phys. Lett., 2003, vol. 373, nos. 3–4, pp. 308. DOI: 10.1016/S0009-2614(03)00588-8.

    Article  CAS  Google Scholar 

  10. Han, S., Lee, M.H., and Ihm, J., Phys. Rev. B, 2002, vol. 65, no. 8, p. 085405. DOI: http://dx.doi.org/10.1103/PhysRevB.65.085405.

    Article  Google Scholar 

  11. Tada, K. and Watanabe, K., Phys. Rev. Lett., 2002, vol. 88, no. 12, p. 127601. DOI: http://dx.doi.org/10.1103/PhysRevLett.88.127601.

    Article  CAS  Google Scholar 

  12. Bonard, J.-M., Stockli, T., Maier, F., de Heer, W.A., Châtelain, A., Salvetat, J.-P., and Forró, L., Phys. Rev. Lett., 1998, vol. 81, no. 7, p. 1441. DOI: http://dx.doi.org/10.1103/PhysRevLett.81.1441.

    Article  CAS  Google Scholar 

  13. Han, S. and Ihm, J., Phys. Rev. B, 2000, vol. 61, no. 15, p. 9986. DOI: http://dx.doi.org/10.1103/PhysRevB.61.9986.

    Article  CAS  Google Scholar 

  14. Yumura, T., Hirahara, K., Bandow, S., Yoshizawab, K., and Iijimaa, S., Chem. Phys. Lett., 2004, vol. 386, nos. 1–3, pp. 38. DOI: 10.1016/j.cplett.2003.12.123.

    Article  CAS  Google Scholar 

  15. De Vita, A., Charlier, J.-Ch., and Blasee, X., Appl. Phys. A, 1999, vol. 68, no. 3, p. 283.

    Article  Google Scholar 

  16. Dean, K.A. and Chalamala, B.R., J. Appl. Phys., 1999, vol. 85, no. 7, p. 3832. DOI: http://dx.doi.org/10.1063/1.369753.

    Article  CAS  Google Scholar 

  17. Rakov, E.G., Nanotrubki i fullereny (Nanotubes and Fullerenes), Moscow: Logos, 2006.

    Google Scholar 

  18. Lovall, D., Buss, M., Graugnard, E., Andres, R.P., and Reifenberger, R., Phys. Rev. B, 2000, vol. 61, no. 8, p. 5863. DOI: http://dx.doi.org/10.1103/PhysRevB.61.5683.

    Article  Google Scholar 

  19. Xue, Z.Q., Liu, W.M., Hou, S.M., Sun, J.P., Shi, Z.J., Gu, Z.N., Zhao, X.Y., Zhang, Z.X., Wu, J.L., Peng, L.M., and Wu, Q.D., Mater. Sci. Eng. C, 2000, vol. 16, nos. 1–2, pp. 17. DOI: 10.1016/S0928-4931(01)00290-9.

    Google Scholar 

  20. Liu, W., Hou, S., Zhang, Z., Zhang, G., Gu, Z., Luo, J., Zhao, X., and Xue, Z., Ultramicroscopy, 2003, vol. 94, nos. 3–4, pp. 175. DOI: 10.1016/S0304-3991(02)00262-0.

    Article  CAS  Google Scholar 

  21. Solhy, A., Machado, B.F., Beausoleil, J., Kihn Y., Gonçalves, F., Pereira, M.F.R., Órfão, J.J.M., Figueiredo, J.L., Faria, J.L., and Serp, P., Carbon, 2008, vol. 46, no. 9, p. 1194. DOI: 10.1016/j.carbon.2008.04.018.

    Article  CAS  Google Scholar 

  22. Pierard, N., Fonseca, A., Konya, Z., Willems, I., Tendeloo, G.V., and Nagy, J.B., Chem. Phys Lett., 2001, vol. 335, nos. 1–2, pp. 1. DOI: 10.1016/S0009-2614(01)00004-5.

    Article  CAS  Google Scholar 

  23. Maurin, G., Stepanek, I., Bernier, P., Colomer, J.-F., Nagy, J.B., and Henn, F., Carbon, 2001, vol. 39, no. 8, p. 1273. DOI: 10.1016/S0008-6223(00)00250-5.

    Article  CAS  Google Scholar 

  24. Zhou, G., Duan, W., and Gu, B., Phys. Rev. Lett., 2001, vol. 87, no. 9, p. 095504. DOI: http://dx.doi.org/10.1103/PhysRevLett.87.095504.

    Article  CAS  Google Scholar 

  25. Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., J. Chem. Phys., 2010, vol. 132, p. 154104. DOI: http://dx.doi.org/10.1063/1.3382344.

    Article  Google Scholar 

  26. Butyrskaya, E.V., Zapryagaev, S.A., and Nechayeva, L.S., J. Basic Appl. Res. Int., 2015, vol. 8, no. 1, p. 56.

    Google Scholar 

  27. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Gaussian, Inc., Wallingford CT, 2009.

    Google Scholar 

  28. Butyrskaya, E.V., Komp’yuternaya khimiya: osnovy teorii i rabota s programmami Gaussian i GaussView (Computer Chemistry: Background and Work with Gaussian and GaussView Programs), Moscow: Solon–Press, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Nechaeva.

Additional information

Original Russian Text © L.S. Nechaeva, E.V. Butyrskaya, S.A. Zapryagaev, 2016, published in Zhurnal Obshchei Khimii, 2016, Vol. 86, No. 7, pp. 1208–1215.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nechaeva, L.S., Butyrskaya, E.V. & Zapryagaev, S.A. Computer simulation of size effects and adsorption properties of one-wall carbon nanotubes (6,6). Russ J Gen Chem 86, 1684–1691 (2016). https://doi.org/10.1134/S1070363216070252

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363216070252

Keywords

Navigation