Skip to main content
Log in

Metals in surface water of Ukraine: the migration forms, features of distribution between the abiotic components of aquatic ecosystems, and potential bioavailability

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

We have generalized the results of long-term studies of coexisting forms of a series of metals (Al, Fe, Mn, Zn, Cu, Cr, Pb, Mo, Cd, and V) in surface water bodies of Ukraine, differing in the hydrological regime and the water chemical composition (rivers, reservoirs, lakes, and ponds). The studied metals content has ranged widely, the concentrations of aluminum, iron, and manganese being typically the highest, and the concentration of molybdenum, vanadium, and cadmium being typically the lowest. The ratio between the suspended and the dissolved forms of the metals has been established. Iron and aluminum migrate mostly as part of the suspended matter, whereas the other metals mainly migrate in the dissolved state. The dissolved manganese form predominates in the water bodies under anaerobic conditions. Copper and molybdenum are present almost always in the dissolved state, regardless of the water body type. The data on the relative content of the labile metal fraction (potentially toxic to aquatic organisms) are reported. The relatively low content of this fraction has been found to be majorly owing to the metal ions complexing with natural organic ligands. The humic compounds, the most widespread group of natural organic compounds, play the primary role in the complexation. Even metals with variable oxidation state (Cr, Mo, and V) are found mainly in the form of anionic complexes with the humic substances. Carbohydrates are also involved in the metals binding in the highly bioproductive water bodies, thus increasing the mass fraction of the neutral complexes during the summer and autumn periods. The molecular weight distribution of anionic metal complexes has been discussed; the substantial part of the metals constitutes the compounds with the molecular weight of below 5.0 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olutona, G.O., Ajaelu, J.C., and Dawodu, M.O., Rep. Opinion, 2012, vol. 4, no. 10, pp. 4–13.

    Google Scholar 

  2. Nkono, N.A, Asubiojo, O.L, Ogunsua, O.A, and Oluwole, A.F., Intern. J. Environ. Studies, 1999, vol. 56, no. 2, pp. 215–230. DOI: 10.1080/00207239908711201.

    Article  CAS  Google Scholar 

  3. Buffle, J., Trends in Analytical Chemistry, 1981, vol. 1, no. 4, pp. 90–95. DOI: 10.1016/0165-9936(81)80014-3.

    Article  CAS  Google Scholar 

  4. Linnik, P.N. and Nabivanets, B.I., Formy migratsii metallov v presnykh poverkhnostnykh vodakh (Forms of Metals Migration in Fresh Surface Waters), Leningrad Gidrometeoizdat, 1986.

    Google Scholar 

  5. Linnik, P.N., Hydrobiol. J., 2000, vol. 36, no. 3, pp. 31–54. DOI: 10.1615/HydrobJv36i3.20.

    Article  Google Scholar 

  6. Linnik, P.N., VasiL’chuk, T.A., Linnik, R.P., and Ignatenko, I.I., Metody Ob’ekty Khim. Anal., 2008, vol. 2, no. 2, pp. 130–145

    Google Scholar 

  7. Moiseenko, T.I., Kudryavtseva, L.P., and Gashkina, N.A., Rasseyannye elementy v poverkhnostnykh vodakh sushi: tekhnofil’nost’, bioakkumulyatsiya i ekotoksikologiya (Trace Elements in the Surface Land Waters Bioaccumulation and Ecotoxicology), Moscow: Nauka, 2006.

    Google Scholar 

  8. Mur, Dzh.V. and Ramamurti, S., Tyazhelye metally v prirodnykh vodakh control’ i otsenka vliyaniya (Heavy Metals in Natural Waters: Monitoring and Assessment of Impact), Moscow: Mir, 1987.

    Google Scholar 

  9. Florence, T.M., Morrison, G.M., and Stauber, J.L. Sci. Total Environ., 1992, vol. 125, pp. 1–13. DOI: 10.1016/0048-9697(92)90377-5.

    Article  CAS  Google Scholar 

  10. Florence, T.M., Trends in Analytical Chemistry, 1983, vol. 2, no. 7, pp. 162–166. DOI: 10.1016/0165-9936(83) 87023-X.

    Article  CAS  Google Scholar 

  11. Linnik., P.N. and Vasilchuk, T.A., Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, Perminova, I.V., Hatfield, K., and Hertkorn, N., Eds., NATO Science Series. IV: Earth and Environmental Series, Dordrecht: Springer, 2005, vol. 52, pp. 135–154.

    Article  Google Scholar 

  12. Linnik, P.M., Lakes and Reservoirs: Research and Management, 2000, vol. 5, pp. 261–270. DOI: 10.1046/j.1440-1770.2000.00126x.

    Article  Google Scholar 

  13. Florence, T.M. and Batley, G.E., Talanta, 1977, vol. 24, pp. 151–158. DOI: 10.1016/0039-9140(77)80080-5.

    Article  CAS  Google Scholar 

  14. Buykx, S.E.J., Cleven, R.F.M.J., Hoegee-Wehmann, A.A., and van den Hoop, M.A.G.T., Fresenius’ J. Anal. Chem., 1999, vol. 363. pp. 599–602. DOI: 10.1007/s00216005125.

    Article  CAS  Google Scholar 

  15. Nabivanets, B.I., Linnik, P.N., and Kalabina, L.V., Kineticheskie metody analiza prirodnykh vod (Kinetic Methods of Analysis of Natural Waters), Kiev Naukova Dumka, 1981.

    Google Scholar 

  16. Forstner, U. and Wittmann, G.T.W., Metal Pollution in the Aquatic Environment, Springer: Berlin, Heidelberg, 1983, 2nd ed.

    Google Scholar 

  17. Linnik, R.P. and Zaporozhets, O.A., J. Analyt. Chem., 2014, vol. 69, no. 6, p. 519. DOI: 10.1134/S1061934814040054.

    Article  CAS  Google Scholar 

  18. Pereira, C.D., Techy, J.G., Ganzarolli, E.M., and Quináia, S.P., J. Environ. Monit., 2012, vol. 14, pp. 1559–1564. DOI: 10.1039/C2EM10949B.

    Article  CAS  Google Scholar 

  19. Fendorf, S., Wielinga, B.W., and Hansel, C.M., Int. Geology Rev., 2000, vol. 42, pp. 691–701. DOI: 10.1080/00206810009465107.

    Article  Google Scholar 

  20. Bielicka, A., Bojanowska, I., and Wisniewski, A., Polish J. Environ. Studies, 2005, vol. 14, no. 1, pp. 5–10.

    CAS  Google Scholar 

  21. Akter, K.F., Owens, G., Davey, D.E., and Naidu, R., Rev. Environ. Contam. Toxicol., 2005, vol. 184, pp. 97–149.

    CAS  Google Scholar 

  22. Pontius, F.W., Brown, G., and Chen, C., J. Am. Water Works Assoc., 1994, vol. 86, pp. 52–63.

    CAS  Google Scholar 

  23. Ukrain Patent 75995, 2012, Byull. Izobret., 2012, no. 24.

  24. Linnik, P.N., and Dikaya, T.P., Water Res., 2014, vol. 41, no 6, p. 696. DOI: 10.1134/S009780781406013X.

  25. Ukrain Patent 107989, 2013; Byull. Izobret., 2013, no. 5.

  26. Linnik, P.N., Zhezherya, V.A., Ivanechko, Ya.S., and Linnik, R.P., Russ. J. Gen. Chem., 2014, vol. 84, no. 13, pp. 2572–2587. DOI: 10.1134/S1070363214130143.

    Article  CAS  Google Scholar 

  27. Savranskii, L.I. and Nadzhafova, O.Yu., Zh. Analit. Khim., 1992, vol. 47, no. 9, pp. 1613–1617.

    CAS  Google Scholar 

  28. Nabivanets, B.J., Osadchyi, V.A., Osadcha, N.M., and Nabivanlets, Yu.B., Analtichna khmya poverkhnostnykh vod (Analytical Chemistry of Surface Waters), Kiev Naukova Dumka, 2007.

    Google Scholar 

  29. Linnik, P.N., Anal. Bioanal. Chem., 2003, vol. 376, no. 4, pp. 405–412. DOI: 10.1007/s00216-003-1882-5.

    CAS  Google Scholar 

  30. Linnik, P.N., Leshchinskaya, A.A., and Nabivanets, B.I., Gidrobiol. Zh., 1989, vol. 25, no. 2, pp. 88–93.

    Google Scholar 

  31. Zaporozhets, O.A. and Dubovenko, L.I., Vestnik Kiev. Univ., Kimiya, 1988, no. 29, pp. 19–23.

    Google Scholar 

  32. Linnik, P.N. and Nabivanets, Yu.B., Gidrobiol. Zh., 1988, vol. 24, no. 1, pp. 68–71.

    CAS  Google Scholar 

  33. Linnik, P.N. and Iskra, I.V., Microchem. J., 1994, vol. 50, pp. 184–190. DOI: 10.1006/mchj.1994.1079.

    Article  CAS  Google Scholar 

  34. Fadeeva, V.I., Shekhovtsova, T.N., Ivanov, V.M., et al., Osnovy analiticheskoi khimii. Prakticheskoe rukovodstvo (Fundamentals of Analytical Chemistry. A Practical Guide), Zolotov, Yu.A., Ed., Moscow Vysshaya Shkola, 2001.

  35. Kharchenko, T.A., Timchenko, V.M., KovaL’chuk, A.A., et al., Gidroekologiya ukrainskogo uchastka Dunaya i sopredel’nykh vodoemov (Hydroecology of Ukrainian Section of the Danube and Adjacent Waters), Kiev Naukova Dumka, 1993.

    Google Scholar 

  36. Linnik, P.N. and Zhezherya, V.A., Water Res., 2013, vol. 40, no. 2, pp. 157–169. DOI: 10.1134/S0097807813020036.

    Article  CAS  Google Scholar 

  37. Linnik, P.N. $, 2003, vol. 25, no. 4, pp. 384–403.

  38. Linnik, P.N. and Ignatenko, I.I., Hydrobiol. J., 2015, vol. 51, no 4, pp. 80–103. DOI: 10.1615/HydrobJv51i4.100.

    Article  Google Scholar 

  39. Linnik, P.N., Hydrobiol. J., 2014, vol. 50, no. 1, pp. 81–99. DOI: 10.1615/HydrobJv50i1.70.

    Article  Google Scholar 

  40. Linnik, P.N., Hydrobiol. J., 2011, vol. 47, no. 2, pp. 86–96. DOI: 10.1615/HydrobJv.47i2.100.

    Article  Google Scholar 

  41. Linnik, P.N., Zhezherya, V.A., and Zubenko, I.B., Hydrobiol. J., 2012, vol. 48, no. 2, pp. 85–101. DOI: 10.1615/HydrobJv.48i2.90.

    Article  Google Scholar 

  42. Linnik, P.N., Zhezherya, V.A., and Linnik, R.P., Ekol. Khim., 2010, vol. 19, no. 4, pp. 213–228.

    Google Scholar 

  43. Linnik, P.N., Ivanechko, Ya.S., Linnik, R.P., and Zhezherya, V.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 13, pp. 2715–2730. DOI: 10.1134/S1070363213130185.

    Article  CAS  Google Scholar 

  44. Santschi, P.H., Guo, L., Means, J.C., and Ravichandran, M., Biogeochemistry of Gulf of Mexico Estuaries, Bianchi, T.S., Pennock, J.R. and Twilley R.R., Eds., John Wiley and Sons, Inc., 1999, ch. 11, pp. 347–380.

  45. Humic Substances in Soil, Sediment and Water, Aiken, G.R., McKnight, D.M., Wershaw, R.L., and MacCarthy, P., Eds., New York: John Wiley and Sons, Inc., 1985.

  46. Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, Findlay, S.E.G. and Sinsabaugh, R.L., Eds., San Diego: Academic Press, 2003.

  47. Humic Substances: Nature’s Most Versatile Materials, Ghabbour, E.A. and Davies, G., Eds., New York Taylor and Francis, Inc., 2005.

  48. Gaillardet, J., Viers J., and Dupre, B., Treatise on Geochemistry, Elsevier Ltd., 2003, vol. 5, pp. 225–272.

    Article  Google Scholar 

  49. Iskra, I.V. and Linnik, P.N., Hydrobiol. J., 1996, vol. 32, nos. 5–6, pp. 78–88.

    Google Scholar 

  50. Linnik, P.N. and Iskra, I.V., Water Res., 1997, vol. 24, no. 4, pp. 456–464.

    CAS  Google Scholar 

  51. Leshhinskaya, A.A. and Linnik, P.N., Gidrobiol. Zh., 1990, vol. 26, no. 4, pp. 91–95.

    Google Scholar 

  52. Linnik, R.P., VasiL’chuk, T.A., and Zaporozhets, O.A., Khim. Tekhnol. Vody, 2003, vol. 25, no. 6, pp. 549–563.

    CAS  Google Scholar 

  53. Gyurcsik, B. and Nagy, L., Coord. Chem. Rev., 2000, vol. 203, pp. 81–149. DOI: 10.1016/S0010-8545(99) 00183-6.

    Article  CAS  Google Scholar 

  54. Whitfield, D.M., Stojkovski, S., and Sarkar, B., Coord. Chem. Rev., 1993, vol. 122, pp. 171–225. DOI: 10.1016/0010-8545(93)80045-7.

    Article  CAS  Google Scholar 

  55. Kaplan, D., Christiaen D., and Arad, S., Appl. Environ. Microbiol., 1987, vol. 53, no. 12, pp. 2953–2956.

    CAS  Google Scholar 

  56. Osipenko, V.P., Hydrobiol. J., 2014, vol. 50, no 5, pp. 89–98. DOI: 10.1615/HydrobJv50i5.90.

    Article  Google Scholar 

  57. Linnik, P.N., Zhezherya, V.A., and Linnik, R.P., Ekol. Khim., 2014, vol. 23, no. 4, pp. 223–241.

    CAS  Google Scholar 

  58. Linnik, P.N. and Chubar’, N.I., Hydrobiol. J., 1999, vol. 35, nos. 1–3, pp. 61–69. DOI: 10.1615/HydrobJv35i1.70.

    Article  Google Scholar 

  59. Linnik, P.N., Zhezherya, V.A., Linnik, R.P., and Ivanechko, Ya.S., Hydrobiol. J., 2013, vol. 49, no. 1, 91–108. DOI: 10.1615/HydrobJv49i1.90.

    Article  Google Scholar 

  60. Linnik, P.N. anf Iskra, I.V., Arch. Hydrobiol., 1996, Suppl. 113: Large Rivers 10, nos. 1–4, pp. 559–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. N. Linnik or R. P. Linnik.

Additional information

Original Russian Text © P.N. Linnik, V.A. Zhezherya, R.P. Linnik, I.I. Ignatenko, I.B. Zubenko, 2015, published in Ekologicheskaya Khimiya, 2015, Vol. 24, No. 3, pp. 153–175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linnik, P.N., Zhezherya, V.A., Linnik, R.P. et al. Metals in surface water of Ukraine: the migration forms, features of distribution between the abiotic components of aquatic ecosystems, and potential bioavailability. Russ J Gen Chem 85, 2965–2984 (2015). https://doi.org/10.1134/S1070363215130162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215130162

Keywords

Navigation