Russian Journal of General Chemistry

, Volume 85, Issue 12, pp 2759–2764 | Cite as

Biacetyl monooxime ferrocenoylhydrazone and its complexing properties

  • A. N. Morozov
  • L. D. Popov
  • E. A. Raspopova
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • D. S. Samorodnyaya
  • V. A. Kogan
Article

Abstract

Biacetyl monooxime ferrocenoylhydrazone has been synthesized and studied by 1H NMR, IR, and electronic spectroscopy. The electronic absorption spectrum of the title compound in the UV and visible regions has been found to depend on the solvent polarity and pH. Most favorable structures of the hydrazone in solution and gas phase have been determined by quantum chemical calculations. The complexing ability of biacetyl monooxime ferrocenoylhydrazone toward copper(II), nickel(II), and zinc(II) ions has been estimated.

Keywords

ferrocenoylhydrazones electronic spectroscopy tautomerism density functional theory complex formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, Togni, A. and Hayashi, T., Eds., Weinheim: VCH, 1995.Google Scholar
  2. 2.
    Connelly, N.G. and Geiger, W.E., Chem. Rev., 1996, vol. 96, no. 2, p. 877. DOI: 10.1021/cr940053x.CrossRefGoogle Scholar
  3. 3.
    Beer, P.D. and Sikanyika, H., Polyhedron, 1990, vol. 9, no. 8, p. 1091. DOI: 10.1016/S0277-5387(00)81299-1.CrossRefGoogle Scholar
  4. 4.
    Millan, L., Fuentealba, M., Manzur, C., Carrillo, D., Faux, N., Caro, B., Robin-Le Guen, F., Sinbandhit, S., Ledoux-Rak, I., and Hamon, J.-R., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 6, p. 1131. DOI: 10.1002/ ejic.200500955.CrossRefGoogle Scholar
  5. 5.
    Van Staveren, D.R. and Metzler-Nolte, N., Chem. Rev., 2004, vol. 104, no. 12, p. 5931. DOI: 10.1021/cr0101510.CrossRefGoogle Scholar
  6. 6.
    Babin, V.N., Raevskii, P.M., Shchitkov, K.G., Snegur, L.V., and Nekrasov, Yu.S., Ros. Khim. Zh., 1995, vol. 39, no. 2, p. 19.Google Scholar
  7. 7.
    Ornelas, C., New J. Chem., 2011, vol. 35, no. 10, p. 1973. DOI: 10.1039/C1NJ20172G.CrossRefGoogle Scholar
  8. 8.
    Mahajan, A., Kremer, L., Louw, S., Guéradel, Y., Chibale, K., and Biot, C., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 10, p. 2866. DOI: 10.1016/ j.bmcl.2011.03.082.CrossRefGoogle Scholar
  9. 9.
    Maguene, G.M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D.A., Bousquet, T., Maugein, J., Lebibi, J., and Pélinski, L., Eur. J. Med. Chem., 2011, vol. 46, no. 1, p. 31. DOI: 10.1016/j.ejmech.2010.10.004.CrossRefGoogle Scholar
  10. 10.
    Rollas, S. and Küçükgüzel, S.G., Molecules, 2007, vol. 12, no. 8, p. 1910. DOI: 10.3390/12081910.CrossRefGoogle Scholar
  11. 11.
    Negi, V.J., Sharma, A.K., Negi, J.S., and Ram, V., Int. J. Pharm. Chem., 2012, vol. 2, no. 4, p. 100. DOI: 10.7439/ijpc.v2i4.516.Google Scholar
  12. 12.
    Ali. M.R., Marella, A., Alam, M.T., Naz, R., Akhter, M., Shaquiquzzaman, M., Saha, R., Tanwar, O., Alam, M.M., and Hooda, J., Indones. J. Pharm., 2012, vol. 23, no. 4, p. 193. DOI: 10.14499/indonesianjpharm0iss0pp193-202.Google Scholar
  13. 13.
    Osborne, A.G. and Whitley, R.H., J. Organomet. Chem., 1980, vol. 193, no. 3, p. 345. DOI: 10.1016/ S0022-328X(00)90295-X.CrossRefGoogle Scholar
  14. 14.
    Curphey, T.J., Santer, J.O., Rosenblum, M., and Richards, J.H., J. Am. Chem. Soc., 1960, vol. 82, no. 19, p. 5249. DOI: 10.1021/ja01504a062.CrossRefGoogle Scholar
  15. 15.
    Nesmeyanov, A.N., Kirsanov, D.N., Setkina, V.N., Kislyakova, N.V., and Kochetkova, N.S., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1962, vol. 11, no. 11, p. 1845. DOI: 10.1007/BF00921336.CrossRefGoogle Scholar
  16. 16.
    Cerrichelli, G., Illuminati, G., Ortaggi, G., and Giuliani, A.M., J. Organomet. Chem., 1977, vol. 127, no. 3, p. 357. DOI: 10.1016/S0022-328X(00)98072-0.CrossRefGoogle Scholar
  17. 17.
    Pavlic, J. and Subrt, J., Collect. Czech. Chem. Commun., 1967, vol. 32, no. 1, p. 78. DOI: 10.1135/cccc19670076.Google Scholar
  18. 18.
    Floris, B. and Illuminati, G., Coord. Chem. Rev., 1972, vol. 8, nos. 1–2, p. 39. DOI: 10.1016/S0010-8545(00) 80049-1.CrossRefGoogle Scholar
  19. 19.
    Lauher, J.W. and Hoffman, R., J. Am. Chem. Soc., 1976, vol. 98, no. 7, p. 1729. DOI: 10.1021/ja00423a017.CrossRefGoogle Scholar
  20. 20.
    Kahn, O., Molecular Magnetism, Weinheim: VCH, 1993.Google Scholar
  21. 21.
    Chaudhuri, P., Coord. Chem. Rev., 2003, vol. 243, nos. 1–2, p. 143. DOI: 10.1016/S0010-8545(03)00081-X.CrossRefGoogle Scholar
  22. 22.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Kogan, V.A., and Tupolova, Yu.P., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493. DOI: 10.1134/ S1070363210030217.CrossRefGoogle Scholar
  23. 23.
    Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., Kogan, V.A., Tupolova, Yu.P., Zubavichus, Ya.V., Trigub, A.L., and Soldatov, A.V., J. Struct. Chem., 2012. vol. 53, no. 2, p. 295. DOI: 10.1134/S0022476612020138.CrossRefGoogle Scholar
  24. 24.
    Ma, Y.-X., Huang, G.-S., Jin, P., and Han, X.-J., Bull. Soc. Chim. Belg., 1991, vol. 100, no. 3, p. 205. DOI: 10.1002/bscb.19911000306.Google Scholar
  25. 25.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision D.01, Wallingford CT: Gaussian, 2004.Google Scholar
  26. 26.
    Zhurko, G.A. and Zhurko, D.A., Chemcraft, version 1.6 (build 338). http://www.chemcraftprog.com.Google Scholar
  27. 27.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623. DOI: 10.1021/j100096a001.CrossRefGoogle Scholar
  28. 28.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  29. 29.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, p. 785. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  30. 30.
    Cammi, R., Mennucci, B., and Tomasi, J., J. Phys. Chem. A, 2000, vol. 104, no. 23, p. 5631. DOI: 10.1021/jp000156l.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. N. Morozov
    • 1
  • L. D. Popov
    • 1
  • E. A. Raspopova
    • 1
  • S. I. Levchenkov
    • 2
  • I. N. Shcherbakov
    • 1
  • D. S. Samorodnyaya
    • 1
  • V. A. Kogan
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations