Advertisement

Russian Journal of General Chemistry

, Volume 85, Issue 8, pp 1945–1951 | Cite as

Extraction-spectrophotometric and theoretical (Hartree-Fock) investigations of a ternary complex of iron(II) with 4-nitrocatechol and 2,3,5-triphenyl-2H-tetrazolium

  • K. B. GavazovEmail author
  • V. B. Delchev
  • G. K. Toncheva
  • Z. G. Georgieva
Article

Abstract

The complex formation and solvent extraction were studied in a system containing iron(II), 4- nitrocatechol (4NC), 2,3,5-triphenyl-2H-tetrazolium chloride (TTC), water, and chloroform. Under the optimum conditions, the extracted complex has a composition of 1 : 1 : 2 (Fe-4NC-TTC) and could be represented with the formula (TT+)2[FeII(4NC2–)(OH)2]. Theoretical calculations were performed at the HF/3- 21G* level in order to elucidate the geometric structure of the complex and electron distribution according to the crystal field theory. The results showed that the most stable configuration is tetrahedral low-spin structure. Some equilibrium constants (association, distribution, and extraction) and characteristics (absorption maximum, molar absorption coefficient, recovery factor, Beer’s law limits, etc.) concerning the application potential of the studied extraction-chromogenic system were determined.

Keywords

iron(II) 4-nitrobenzene-1,2-diol liquid–liquid extraction ion association HF calculations groundstate optimizations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gavazov, K.B., Acta Chim. Slov., 2012, Vol. 59, No. 1, p. 1.Google Scholar
  2. 2.
    Salahifar, E., Nematollahi, D., Mahyari, A., and Nosratzadegan, K., J. Electrochem. Soc., 2015, Vol. 162, No. 6, p. G19. DOI: 10.1149/2.0791506jes.CrossRefGoogle Scholar
  3. 3.
    Skrzypczak-Jankun, E., Borbulevych, O.Y., and Jankun, J., Acta Crystallogr., Sect. D, 2004, Vol. 60, No. 3, p. 613. DOI: 10.1107/S0907444904000861.CrossRefGoogle Scholar
  4. 4.
    Spaapen, L.J.M., Verhagen, J., Veldink, G.A., and Vliegenthart, J.F.G., BBA: Lipids Lipid Metab., 1980, Vol. 617, No. 1, p. 132. DOI: 10.1016/0005-2760(80)90230-1.Google Scholar
  5. 5.
    Tyson, C.A., J. Biol. Chem., 1975, Vol. 250, No. 5, p. 1765.Google Scholar
  6. 6.
    Dong, G. and Lai, W., J. Phys. Chem. B, 2014, Vol. 118, No. 7, p. 1791. DOI: 10.1021/jp411812m.CrossRefGoogle Scholar
  7. 7.
    Crisponi, G. and Remelli, M., Coord. Chem. Rev., 2008, Vol. 252, nos. 10–11, p. 1225. DOI: 10.1016/j.ccr.2007.12.014.CrossRefGoogle Scholar
  8. 8.
    Nurchi, V.M., Pivetta, T., Lachowicz, J.I., and Crisponi, G., J. Inorg. Biochem., 2009, Vol. 103, No. 2, p. 227. DOI: 10.1016/j.jinorgbio.2008.10.011.CrossRefGoogle Scholar
  9. 9.
    Vasudevan, D. and Stone, A.T., J. Colloid Interface Sci., 1998, Vol. 202, No. 1, p. 1. DOI: 10.1006/jcis.1998.5422.CrossRefGoogle Scholar
  10. 10.
    Luther, G.W. III, Rozan, T.F., Witter, A., and Lewis, B., Geochem. Trans., 2001, Vol. 2, No. 9, p. 65. DOI: 10.1039/b105736g.CrossRefGoogle Scholar
  11. 11.
    Hakkinen, P., Finn. Chem. Lett., 1984, Vol. 3, p. 59.Google Scholar
  12. 12.
    Toncheva, G.K., Stefanova, T.S., and Gavazov, K.B., Orient. J. Chem., 2015, Vol. 31, No. 1, p. 327. DOI: 10.13005/ojc/310137.CrossRefGoogle Scholar
  13. 13.
    Gavazov, K., Stefanova T., and Toncheva, G., J. Chem. Technol. Metall., 2013, Vol. 48, No. 6, p. 642.Google Scholar
  14. 14.
    Nepal, J.K. and Dubey, S.N., Indian J. Chem., Sect. A, 1986, Vol. 25, No. 5, p. 485.Google Scholar
  15. 15.
    Zhang, S.-F., Yang, X.-G, Liu, Z., Li, W-H, and Hou, B.-R., Acta Crystallogr., Sect. E, 2007, Vol. 63, No. 6, p. m1583. DOI: 10.1107/S160053680702034X.CrossRefGoogle Scholar
  16. 16.
    Moreno-Villoslada, I., González, F., Rivera, L., Hess, S., Rivas, B.L., Shibue, T., and Nishide, H., J. Phys. Chem. B, 2007, Vol. 111, No. 22, p. 6146. DOI: 10.1021/jp071782m.CrossRefGoogle Scholar
  17. 17.
    Xie, T., Brockner, W., and Gjikaj, M., Z. Naturforsch., Teil B, 2009, Vol. 64, No. 9, p. 989.Google Scholar
  18. 18.
    Nakashima, K., Kawame, N., Kawamura, Y., Tamada, O., and Yamauchi, J., Acta Crystallogr., Sect. E, 2009, Vol. 65, No. 11, p. m1406. DOI: 10.1107/S1600536809041464.CrossRefGoogle Scholar
  19. 19.
    Gjikaj, M., Xie, T., and Brockner, W., Z. Anorg. Allg. Chem., 2009, Vol. 635, nos. 6–7, p. 1036. DOI: 10.1002/zaac.200801392.CrossRefGoogle Scholar
  20. 20.
    Gjikaj, M., Xie, T., and Brockner, W., Z. Anorg. Allg. Chem., 2009, Vol. 635, nos. 13–14, p. 2273. DOI: 10.1002/zaac.200900174.CrossRefGoogle Scholar
  21. 21.
    Fun, H-K, Chia, T.S., Mostafa, G.A.E., Hefnawy, M.M., and Abdel-Aziz, H.A., Acta Crystallogr., Sect. E, 2012, Vol. 68, No. 8, p. o2567. DOI: 10.1107/S1600536812032941.CrossRefGoogle Scholar
  22. 22.
    Buttrus, N.H., Alyass, J.M., and Mohammad, A.F., J. Chem. Chem. Eng., 2013, Vol. 7, p. 613.Google Scholar
  23. 23.
    Creanga, D. and Nadejde, C., Chem. Pap., 2014, Vol. 68, No. 2, p. 260. DOI: 10.2478/s11696-013-0429-2.CrossRefGoogle Scholar
  24. 24.
    Gavazov, K., Lekova, V., Boyanov, B., and Dimitrov, A., J. Therm. Anal. Calorim., 2009, Vol. 96, No. 1, p. 249. DOI: 10.1007/s10973-008-9421-4.CrossRefGoogle Scholar
  25. 25.
    Toncheva, G., Gavazov, K., Lekova, V., Stojnova, K., and Dimitrov, A., Cent. Eur. J. Chem., 2011, Vol. 9, No. 6, p. 1143. DOI: 10.2478/s11532-011-0101-z.CrossRefGoogle Scholar
  26. 26.
    Stefanova, T.S., Simitchiev, K.K., and Gavazov, K.B., Chem. Pap., 2015, Vol. 69, No. 4, p. 495. DOI: 10.1515/chempap-2015-0048.CrossRefGoogle Scholar
  27. 27.
    Zhiming, Z., Dongsten, M., and Cunxiao, Y., J. Rare Earths, 1997, Vol. 15, No. 3, p. 216.Google Scholar
  28. 28.
    Asmus, E., Fresenius. J. Anal. Chem., 1960, Vol. 178, No. 2, p. 104. DOI: 10.1007/bf00467200.CrossRefGoogle Scholar
  29. 29.
    Hawrelak, E.J., Bernskoetter, W.H., Lobkovsky, E., Yee, G.T., Bill, E., and Chirik, P.J., Inorg. Chem., 2005, Vol. 44, No. 9, p. 3103. DOI: 10.1021/ic048202+.CrossRefGoogle Scholar
  30. 30.
    Walker, I.M. and Drago, R.S., J. Am. Chem. Soc., 1968, Vol. 90, No. 25, p. 6951. DOI: 10.1021/ja01027a010.CrossRefGoogle Scholar
  31. 31.
    Collman, J.P., Gagne, R.R., Reed, C.A., Robinson, W.T., and Rodley, G.A., Proc. Natl. Acad. Sci. USA, 1974, Vol. 71, No. 4, p. 1326.CrossRefGoogle Scholar
  32. 32.
    Cornard, J.-P., Lapouge, C., and Merlin, J.-C., Chem. Phys., 2007, Vol. 340, nos. 1–3, p. 273. DOI: 10.1016/j.chemphys.2007.09.010.CrossRefGoogle Scholar
  33. 33.
    Delchev, V.B., Gavazov, K.B., and Shterev, I.G., J. Mol. Model., 2014, Vol. 20, No. 12, p. 1. DOI: 10.1007/s00894-014-2549-1.CrossRefGoogle Scholar
  34. 34.
    Holme, A. and Langmyhr, F.J., Anal. Chim. Acta, 1966, Vol. 36, p. 383. DOI: 10.1016/0003-2670(66)80066-1.CrossRefGoogle Scholar
  35. 35.
    Shrivastava, A. and Gupta, V.B., Chron. Young Sci., 2011, Vol. 2, No. 1, p. 21. DOI: 10.4103/2229-5186.79345.CrossRefGoogle Scholar
  36. 36.
    Mehra, M.C. and Katyal, M., Bull. Environ. Contam. Toxicol., 1983, Vol. 30, No. 1, p. 337. DOI: 10.1007/bf01610142.CrossRefGoogle Scholar
  37. 37.
    Akl, M.A., Mori, Y., and Sawada, K., Anal. Sci., 2006, Vol. 22, No. 9, p. 1169. DOI: 10.2116/analsci.22.1169.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • K. B. Gavazov
    • 1
    Email author
  • V. B. Delchev
    • 1
  • G. K. Toncheva
    • 1
  • Z. G. Georgieva
    • 1
  1. 1.Faculty of ChemistryUniversity of Plovdiv “Paisii Hilendarskii,”PlovdivBulgaria

Personalised recommendations