Skip to main content
Log in

Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Formation of nanocrystalline yttrium orthoferrite of ∼30 nm average crystallite size from coprecipitated iron(III) and yttrium hydroxides was studied by thermo-X-ray diffractometry and simultaneous thermal analysis over 25–900°C temperature range. A mechanism of physicochemical transformations leading to the formation of YFeO3 nanoparticles was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen, H., Xu, J., Wu, A., Zhao, J., and Shi, M., Mater. Sci. Eng., B, 2009, vol. 157, nos. 1–3, p. 77. DOI:10.1016/j.mseb.2008.12.020.

    Article  CAS  Google Scholar 

  2. Cheng, Z.X., Shen, H., Xu, J., Liu, P., and Zhang, S.J., J. Appl. Phys., 2012, vol. 111, no. 3, p. 034103–1. DOI:10.1063/1.3681294.

    Article  Google Scholar 

  3. Shang, M., Zhang, C., Zhang, T., Yuan, L., Ge, L., Yuan, H., and Feng, S., Appl. Phys. Lett., 2013, vol. 102, no. 6, p. 062903–1. DOI: 10.1063/1.4791697.

    Article  Google Scholar 

  4. Zhang, R.-L., Chen, C.L., Jin, K.-X., Niu, L.-W., Xing, H., and Luo, B.-C., J. Electroceram., 2013, vol. 32, nos. 2–3, p. 187. DOI: 10.1007/s10832-013-9869-x.

    CAS  Google Scholar 

  5. Mathur, S., Veith, M., Rapalaviciute, R., Shen H., Goya, G.F., Filho, W.L.M., and Berquo, T.S., Chem. Mater., 2004, vol. 16, no. 10, p. 1906. DOI: 10.1021/cm0311729.

    Article  CAS  Google Scholar 

  6. Tien, N.A., Almjasheva, O.V., Mittova, I.Ya., Stognei, O.V., and Soldatenko, S.A., Inorg. Mater., 2009, vol. 45, no. 11, p. 1304. DOI: 10.1134/S0020168509110211.

    Article  Google Scholar 

  7. Tang, P., Chen, H., Cao, F., and Pan, G., Catal. Sci. Technol., 2011, vol. 1, no. 7, p. 1145. DOI: 10.1039/c1cy00199j.

    Article  CAS  Google Scholar 

  8. Zhang, W., Fang, C., Yin, W., and Zeng, Y., Mater. Chem. Phys., 2013, vol. 137, no. 3, p. 877. DOI:10.1016/j.matchemphys.2012.10.029.

    Article  CAS  Google Scholar 

  9. Popkov, V.I. and Almjasheva, O.V., Nanosystems: Physics, Chemistry, Mathematics, 2014, vol. 5, no. 5, p. 703.

    Google Scholar 

  10. Tien, N.A., Mittova, I.Ya., and Al’myasheva, O.V., Russ. J. Appl. Chem., 2009, vol. 82, no. 11, p. 1915. DOI: 10.1134/S1070427209110020.

    Article  Google Scholar 

  11. Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-Phase Reactions), Moscow: Khimiya, 1978, p. 360.

    Google Scholar 

  12. Nakayama, S., J. Mater. Sci., 2001, vol. 6, p. 5643. DOI: 10.1023/A:1012526018348.

    Article  Google Scholar 

  13. Morozov, M.I., Lomanova, N.A., and Gusarov, V.V., Russ. J. Gen. Chem., 2003, vol. 73, no. 11, p. 1676. DOI: 10.1023/B:RUGC.0000018640.30953.70.

    Article  CAS  Google Scholar 

  14. Sanchez, C., Rozes, L., Ribot, F., Laberty-Robert, C., Grosso, D., Sassoye, C., Boissiere, C., and Nicole L., Compt. Rend. Chim., 2010, vol. 13, nos. 1–2, p. 3. DOI:10.1016/j.crci.2009.06.001.

    Article  CAS  Google Scholar 

  15. Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, p. 1846.

    CAS  Google Scholar 

  16. Sytschev, A.E. and Merzhanov, A.G., Russ. Chem. Rev., 2004, vol. 73, no. 2, p. 147. DOI: 10.1070/RC2004v073n02ABEH000837.

    Article  CAS  Google Scholar 

  17. Popkov, V.I. and Almjasheva, O.V., Russ. J. Appl. Chem., 2014, vol. 87, no. 2, p. 167. DOI: 10.1134/S1070427214020074.

    Article  CAS  Google Scholar 

  18. Lomanova, N.A. and Gusarov, V.V., Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 5, p. 696.

    CAS  Google Scholar 

  19. Tugova, E.A. and Karpov, O.N., Nanosystems: Physics, Chemistry, Mathematics, 2014, vol. 5, no. 6, p. 854.

    Google Scholar 

  20. Gusarov, V.V. and Lomanova, N.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 12, p. 2251. DOI: 10.1134/S1070363213120049.

    Article  Google Scholar 

  21. Christensen, A.N. and Hazell, R.G., Acta Chem. Scand., 1967, vol. 21, p. 481. DOI: 10.3891/acta.chem.scand.21-0481.

    Article  Google Scholar 

  22. Balek, V. and Subrt, J., Pure Appl. Chem., 1995, vol. 67, no. 11, p. 1839. DOI: 10.1351/pac199567111839.

    Article  CAS  Google Scholar 

  23. Zhang, P., Navrotsky, A., Guo, B., Kennedy, I., Clark, A.N., Lesher, C., and Liu, Q., J. Phys. Chem., C, 2008, vol. 112, no. 4, p. 932. DOI: 10.1021/jp7102337.

    Article  CAS  Google Scholar 

  24. D’Assuncao, L.M., Giolito, I., and Ionashiro, M., Thermochim. Acta, 1989, vol. 137, no. 2, p. 319. DOI:10.1016/0040-6031(89)87224-7.

    Article  Google Scholar 

  25. Hussein, G.A.M., Thermochim. Acta, 1994, vol. 244, p. 139. DOI: 10.1016/0040-6031(94)80214-9.

    Article  CAS  Google Scholar 

  26. Aghazadeh, M., Ghaemi, M., Golikand, A.N., Yousefi, T., and Jangju, E., Int. Scholar. Res. Network Ceramics, 2011, vol. 2011, p. 1. DOI: 10.5402/2011/542104.

    Google Scholar 

  27. Wang, J., Liu, Q., Xue, D., and Li, F., J. Mater. Sci. Lett., 2002, vol. 21, p. 1059. DOI: 10.1023/A:1016033329184.

    Article  CAS  Google Scholar 

  28. Saraswat, I., Vajpei, A.C., Garg, V.K., Sharma, V.K., and Prakash, N., J. Colloid Interface Sci., 1980, vol. 73, no. 2, p. 373. DOI: 10.1016/0021-9797(80)90083-1.

    Article  CAS  Google Scholar 

  29. Palchik, O., Felner, I., Kataby, G., and Gedanken, A., J. Mater. Res., 2011, vol. 15, no. 10, p. 2176. DOI:10.1557/JMR.2000.0313.

    Article  Google Scholar 

  30. Gusarov, V.V. and Suvorov, S.A., Russ. J. Appl. Chem., 1990, vol. 63, no. 8, p. 1689.

    CAS  Google Scholar 

  31. Fawcett, T.G., Faber, J., Needham, F., Kabekkodu, S.N., Hubbard, C.R., and Kaduk, J.A., Powder Diffr., 2012, vol. 21, no. 2, p. 105. DOI: 10.1154/1.2204958.

    Article  Google Scholar 

  32. Young, R.A., The Rietveld Method, Oxford: Oxford Univ., 1993, p. 312.

    Google Scholar 

  33. Lutterotti, L., Matthies, S., and Wenk, H.R., Int. Union Crystallogr. Comm. Powder Diffr. Newslett., 1999, vol. 21, p. 14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Popkov.

Additional information

Original Russian Text © V.I. Popkov, O.V. Almjasheva, M.P. Schmidt, V.V. Gusarov, 2015, published in Zhurnal Obshchei Khimii, 2015, Vol. 85, No. 6, pp. 901–907.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, V.I., Almjasheva, O.V., Schmidt, M.P. et al. Formation mechanism of nanocrystalline yttrium orthoferrite under heat treatment of the coprecipitated hydroxides. Russ J Gen Chem 85, 1370–1375 (2015). https://doi.org/10.1134/S107036321506002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107036321506002X

Keywords

Navigation