Russian Journal of General Chemistry

, Volume 85, Issue 1, pp 126–134 | Cite as

Ferrocenoylhydrazone of 2-N-tosylaminobenzaldehyde: Structure, properties, and complexing ability

  • L. D. Popov
  • A. N. Morozov
  • E. A. Raspopova
  • S. I. Levchenkov
  • I. N. Shcherbakov
  • A. S. Burlov
  • G. G. Aleksandrov
  • V. A. Kogan
Article

Abstract

2-N-Tosylaminobenzaldehyde ferrocenoylhydrazone was synthesized. The crystal structure of the hydrazone was shown to include two independent molecules differing in mutual orientation of the tosyl and ferrocene fragments. Quantum-chemical simulation of the hydrazone tautomerism was performed. Its complexes with Cu(II), Ni(II), Zn(II), and Cd(II) were synthesized and investigated.

Keywords

ferrocenoylhydrazones electronic spectroscopy tautomerism X-ray diffraction analysis density functional theory complex formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vigato, P.A. and Tamburini, S., Coord. Chem. Rev., 2004, vol. 248, nos. 18–20, pp. 1717. DOI: 10.1016/j.cct.2003.09.003.CrossRefGoogle Scholar
  2. 2.
    Vigato, P.A., Peruzzo, V., and Tamburini, S., Coord. Chem. Rev., 2012, vol. 56, nos. 11–12, pp. 953. DOI: 10.1016/j.ccr.2012.01.009.CrossRefGoogle Scholar
  3. 3.
    Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova Yu.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, pp. 643. DOI: 10.1070/RC2009v078n07ABEH003890.CrossRefGoogle Scholar
  4. 4.
    Stadler, A.-M. and Harrowfield, J., Inorg. Chim. Acta, 2009, vol. 362, no. 12, pp. 4298. DOI: 10.1016/j.ica.2009.05.062.CrossRefGoogle Scholar
  5. 5.
    Fraga, C.A.M. and Barreiro, E.J., Curr. Med. Chem., 2006, vol. 13, no. 2, pp. 167. DOI: 10.2174/092986706775197881.CrossRefGoogle Scholar
  6. 6.
    Rollas, S. and Kücükgüzel, S.G., Molecules, 2007, vol. 12, no. 8, pp. 1910. DOI: 10.3390/12081910.CrossRefGoogle Scholar
  7. 7.
    Suvarapu, L.N., Seo, Y.K., Baek, S.O., and Ammireddy, V.R., Eur. J. Chem., 2012, vol. 9, no. 3, pp. 1288. DOI: 10.1155/2012/534617.Google Scholar
  8. 8.
    Parpiev, N.A., Yusupov, V.T., Yakimovich, S.N., and Sharipov Kh.G. Atsilgidrazony i ikh kompleksy s perekhodnymi metallami (Acetylhydrazones and Their Complexes with Transition Metals), Tasjkent: Fan, 1988.Google Scholar
  9. 9.
    Kogan, V.A., Zelentsov, V.V., Larin, G.M., and Lukov, V.V., Kompleksy perekhodnykh metallov s gidrazonami (Transition Metal Complexes with Hydrazones), Moscow: Nauka, 1990.Google Scholar
  10. 10.
    Millan, L., Fuentealba, M., Manzur, C., Carrillo, D., Faux, N., Caro, B., Robin-Le Guen, F., Sinbandhit, S., Ledoux-Rak, I., and Hamon, J.-R., Eur. J. Inorg. Chem., 2006, vol. 2006, no. 6, pp. 1131. DOI: 10.1002/ejic.200500955.CrossRefGoogle Scholar
  11. 11.
    Beer, P.D. and Sikanyika, H., Polyhedron, 1990, vol. 9, no. 8, pp. 1091. DOI: 10.1016/S0277-5387(00)81299-1.CrossRefGoogle Scholar
  12. 12.
    Choham, Z.H. and Praveen, M., Appl. Organomet. Chem., 2001, vol. 15, no. 7, pp. 617. DOI: 10.1002/aoc.179.CrossRefGoogle Scholar
  13. 13.
    Mahajan, A., Kremer, L., Louw, S., Guéradel, Y., Chibale, K., and Biot, C., Bioorg. Med. Chem. Lett., 2011, vol. 21, no. 10, pp. 2866. DOI: 10.1016/j.bmcl.2011.03.082.CrossRefGoogle Scholar
  14. 14.
    Maguene, G.M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D.A., Bousquet, T., Maugein, J., Lebibi, J., and Pélinski, L., Eur. J. Med. Chem., 2011, vol. 46, no. 1, pp. 31. DOI: 10.1016/j.ejmech.2010.10.004.CrossRefGoogle Scholar
  15. 15.
    Ornelas, C., New J. Chem., 2011, vol. 35, no. 10, pp. 1973. DOI: 10.1039/C1NJ20172G.CrossRefGoogle Scholar
  16. 16.
    Fang, C.-J., Duan, C.-Y., Mo, H., He, C., Meng, Q.-J., Liu, Y.-J., Mei, Y.-H., and Wang, Z.-M., Organometallics, 2001. Vol., 20, no. 12, pp. 2525. DOI: 10.1021/om000965rGoogle Scholar
  17. 17.
    Ma, Y.-X., Lu, Z.-L., Song, Q.-B., and Wu, X.-L., J. Coord. Chem., 1994, vol. 32, no. 4, pp. 353. DOI: 10.1080/00958979408024255.CrossRefGoogle Scholar
  18. 18.
    Kamalendu, D. and Nandi, K.K., Synt. React. Inorg. Metal-Org. Chem., 1999, vol. 29, no. 3, pp. 419. DOI: 10.1080/00945719909349461.CrossRefGoogle Scholar
  19. 19.
    Lu, Z.-L., Xiao, W., Kang, B.-S., Su, C.-Y., and Liu, J., J. Mol. Struct., 2000, vol. 523, nos. 1–3, pp. 133. DOI: 10.1016/S0022-2860(99)00405-6.CrossRefGoogle Scholar
  20. 20.
    Taher, S.K., El-Sayed, M.A., Retatheba, M., and El-Dissouky, A., Synt. React. Inorg. Metal-Org. Chem., 2002, vol. 32, no. 10, pp. 1769. DOI: 10.1081/SIM-120016464.CrossRefGoogle Scholar
  21. 21.
    Liu, W.-Y., Ma, Y.-X., Juar, J.-F., and Wang, Y.-T., Synt. React. Inorg. Metal-Org. Chem., 2001, vol. 31, no. 5, pp. 917. DOI: 10.1081/SIM-100104859.CrossRefGoogle Scholar
  22. 22.
    Krishnamoorthy, P., Sathyadevi, P., Butorac, R.R., Cowley, A.H., Bhuvanesh, N.S.P., and Dharmaraj, N., Dalton Trans., 2012, vol. 41, no. 15, pp. 4423. DOI: 10.1039/c2dt11938b.CrossRefGoogle Scholar
  23. 23.
    Niu, Y., Zhang, H., Jia, H., Wu, Q., Li, F., and Zhang, H., Synth. React. Inorg. Metal-Org. Chem., 1997, vol. 27, no. 10, pp. 1491. DOI: 10.1080/00945719708003153.CrossRefGoogle Scholar
  24. 24.
    Huang, G.-S., Song, Q.-B., and Ma, Y.-X., Synt. React. Inorg. Metal-Org. Chem., 2001, vol. 31, no. 2, pp. 297. DOI: 10.1081/SIM-100002048.CrossRefGoogle Scholar
  25. 25.
    Yuan, Y., Cao, Z., Fu, N., Wang, J., Weng, L., Bezerra de Carvalho, A., and Peppe, C., J. Organomet. Chem., 2001, vols. 637–639, pp. 631. DOI: 10.1016/S0022-328X(01)00961-5CrossRefGoogle Scholar
  26. 26.
    Ma, Y.-X., Huang, G.-S., Jin, P., and Han, X.-J., Bull. Soc. Chim. Belg., 1991, vol. 100, no. 3, pp. 205. DOI: 10.1002/bscb.19911000306.Google Scholar
  27. 27.
    Wang, X., Han, X., Lu, W., Liu, X., and Sun, D., Synt. React. Inorg. Metal-Org. Chem., 1992, vol. 22, no. 8, pp. 1169. DOI: 10.1080/15533179208020260.CrossRefGoogle Scholar
  28. 28.
    Popp, F.D. and Moynahan, F.B., J. Heterocycl. Chem., 1970, vol. 7, no. 2, pp. 351. DOI: 10.1002/jhet.5570070216.CrossRefGoogle Scholar
  29. 29.
    Ma, Y., Li, F., and Sun, H., Inorg. Chim. Acta 1988, vol. 149, no. 2, pp. 209. DOI: 10.1016/S0020-1693(00) 86069-7.CrossRefGoogle Scholar
  30. 30.
    Li, W.-J., Song, M., and Xu, Y., Acta Cryst. Sect., E, 2011, vol. 68, pp. m8. DOI: 10.1107/S1600536811050835.CrossRefGoogle Scholar
  31. 31.
    Burlov, A.S., Kuznetsova, L.I., Adamova, S.I., Kurbatov, V.P., Bondarenko, G.I., and Garnovskii, A.D., Russ. J. Gen. Chem., 2000, vol. 70, no. 5, pp. 750.Google Scholar
  32. 32.
    Popov, L.D., Askalepova, O.I., Kaimakan, E.B., Tupolova Yu.P., Shcherbakov, I.N., Levchenkov, S.I., Lukov, V.V., Maevskii, O.V., Kogan, V.A., Burlov, A.S., and Zubenko, A.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 7, pp. 1233. DOI: 10.1134/S1070363212070080.CrossRefGoogle Scholar
  33. 33.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., Tupolova Yu.P., Burlov, A.S., Aleksandrov, G.G., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 2011, vol. 37, no. 6, pp. 483. DOI: 10.1134/S1070328411060078.CrossRefGoogle Scholar
  34. 34.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Tsaturyan, A.A., Tupolova Yu.P., Starikova, Z.A., Burlov, A.S., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 2013, vol. 39, no. 5, pp. 367. DOI: 10.1134/S107032841304009X.CrossRefGoogle Scholar
  35. 35.
    Raspopova, E.A., Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Kogan, V.A., and Levchenkov, S.I., Russ. J. Gen. Chem., 2008, vol. 78, no. 8, pp. 1586. DOI: 10.1134/S1070363208080215.CrossRefGoogle Scholar
  36. 36.
    Raspopova, E.A., Morozov, A.N., Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., and Kogan, V.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 1, pp. 131. DOI: 10.1134/S1070363212010215.CrossRefGoogle Scholar
  37. 37.
    Raspopova, E.A., Morozov, A.N., Bulanov, A.O., Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., and Kogan, V.A., Russ. J. Gen. Chem., 2012, vol. 82, no. 8, pp. 1457. DOI: 10.1134/S1070363212080233.CrossRefGoogle Scholar
  38. 38.
    Kitaev, Yu. and Buzykin, B.I., Gidrazony (Hydrazones), Moscow: Nauka, 1974.Google Scholar
  39. 39.
    Cammi, R., Mennucci, B., and Tomasi, J., J. Phys. Chem., A, 2000, vol. 104, no. 23, pp. 5631. DOI: 10.1021/jp000156l.CrossRefGoogle Scholar
  40. 40.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623. DOI: 10.1021/j100096a001.CrossRefGoogle Scholar
  41. 41.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  42. 42.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, pp. 785. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  43. 43.
    Osborne, A.G., Whitley, R.H., and Meads, R.E., J. Organomet. Chem., 1980, vol., 193, no. 3, pp. 345. DOI: 10.1016/S0022-328X(00)90295-X.CrossRefGoogle Scholar
  44. 44.
    Lauher, J.W. and Hoffman, R., J. Am.Chem. Soc., 1976, vol. 98, no. 7, pp. 1729. DOI: 10.1021/ja00423a017.CrossRefGoogle Scholar
  45. 45.
    Kahn, O., Molecular Magnetism, New York: Wiley-VCH Publishers, 1993.Google Scholar
  46. 46.
    Mahia, J., Maestro, M., Vazquez, M., Bermejo, M.R., Gonzalez, A.M., and Maneiro, M., Acta Crystallogr., C, 1999, vol. 55, no. 12, pp. 2158. DOI: 10.1107/S0108270199011580.CrossRefGoogle Scholar
  47. 47.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision, D.01. Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  48. 48.
    Zhurko, G.A. and Zhurko, G.A., Chemcraft ver. 1.6 (build 338). URL: http://www.chemcraftprog.com.
  49. 49.
    SMART and SAINT, Release 5.0, Area Detector control and Integration Software, Bruker AXS, Analytical X-Ray Instruments, Madison, Wisconsin, USA, 1998.Google Scholar
  50. 50.
    Sheldrick, G.M., SADABS: A Program for Exploiting the Redundancy of Area-detector X-Ray Data, University of Göttingen, Göttingen, Germany, 1999.Google Scholar
  51. 51.
    Sheldrick, G.M., Acta Cryst. A, 2008, vol. 64, no. 1, pp. 112. DOI: 10.1107/S0108767307043930.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. D. Popov
    • 1
  • A. N. Morozov
    • 1
  • E. A. Raspopova
    • 1
  • S. I. Levchenkov
    • 2
  • I. N. Shcherbakov
    • 1
  • A. S. Burlov
    • 1
  • G. G. Aleksandrov
    • 3
  • V. A. Kogan
    • 1
  1. 1.Chemical DepartmentSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Scientific Center of the Russian Academy of SciencesRostov-on-DonRussia
  3. 3.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations