Russian Journal of General Chemistry

, Volume 85, Issue 1, pp 92–96 | Cite as

Protolytic and complexation properties of the cyclic thiosemicarbazone ligand

  • L. D. Popov
  • G. A. Gazieva
  • A. N. Kravchenko
  • Yu. N. Tkachenko
  • O. I. Askalepova
  • S. I. Levchenkov
  • T. B. Karpova
  • Yu. P. Tupolova
  • V. A. Kogan
Article

Abstract

The acid-base properties of the thiourea based cyclic thiosemicarbazone have been studied. The tautomerism and complex formation ability of the thiosemicarbazone were investigated by the methods of quantum chemistry and electronic spectroscopy. The complexes of copper(II), nickel(II), cobalt(II), and mercury(II) were synthesized and their structure suggested.

Keywords

thiosemicarbazones tautomerism density functional theory electronic spectroscopy complex formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pandeya, S.N. and Dimmock, J.R., Pharmazie, 1993, vol. 48, no. 9, pp. 659.Google Scholar
  2. 2.
    West, D.X., Padhye, S.B., and Sonawane, P.B., Struct. Bond., 1991, vol. 76, pp. 1. DOI: 10.1007/3-540-53499-7_1.CrossRefGoogle Scholar
  3. 3.
    Bharti, N, Husain, K., Garza, M.T G., Cruz-Vega, D.E., Castro-Garza, J., Mata-Cardenas, B.D., Naqvi, F., and Azam, A., Bioorg. Med. Chem. Lett., 2002, vol. 12, no. 23, pp. 3475. DOI: 10.1016/S0960-894X(02)00703-5.CrossRefGoogle Scholar
  4. 4.
    Zelenin, K.N., Khorseeva, L.A., and Alekseev, V.V., Pharn. Chem. J., 1992, vol. 26, no. 5, pp. 395.CrossRefGoogle Scholar
  5. 5.
    Dilovic, I., Rubcic, M., Vrdoljak, V., Kraljevic Pavelic, S., Kralj, M., Piantanida, I., and Cindric, M., Bioorg. Med. Chem., 2008, vol. 16, no. 9, pp. 5189. DOI: 10.1016/j.bmc.2008.03.006.CrossRefGoogle Scholar
  6. 6.
    West, D.X., Liberta, A.E., Padhye, S.B., Chikate, R.C., Sonawane, P.B., Kumbar, A.S., and Yerrende, R.G., Coord. Chem. Rev., 1993, vol. 123, nos. 1–2, pp. 49. DOI: 10.1016/0010-8545(93)85052-6.CrossRefGoogle Scholar
  7. 7.
    Lobana, T.S., Sharma, R., Bawa, G., and Khanna, S., Coord. Chem. Rev., 2009, vol. 253, nos. 7–8, pp. 977. DOI: 10.1016/j.ccr.2008.07.004.CrossRefGoogle Scholar
  8. 8.
    Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova, Yu.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, pp. 643. DOI: 10.1070/RC2009v078n07ABEH003890.CrossRefGoogle Scholar
  9. 9.
    Casas, J.S., Garcia-Tasende, M.S., and Sordo, J., Coord. Chem. Rev., 2000, vol., 209, no. 1, pp. 197. DOI: 10.1016/S0010-8545(00)00363-5.CrossRefGoogle Scholar
  10. 10.
    Soliman, A.A. and Linert, W., Monatch. Chem., 2007, vol. 138, no. 3, pp. 175. DOI: 10.1007/s00706-007-0585-6.CrossRefGoogle Scholar
  11. 11.
    Ronconi, L. and Sadler, P.J., Coord. Chem. Rev., 2007, vol. 251, nos. 13-14, pp. 1633. DOI: 10.1016/j.ccr.2006.11.017.CrossRefGoogle Scholar
  12. 12.
    Oliveira, R.B., Souza-Fagundes, E.M., Soares, R.P.P., Andrade, A.A., Krettli, A.U., and Zani, C.L., Eur. J. Med. Chem., 2008, vol. 43, no. 9, pp. 1983. DOI: 10.1016/j.ejmech.2007.11.012.CrossRefGoogle Scholar
  13. 13.
    Smee, D.F. and Sidwell, R.W., Antivir. Res., 2003, vol. 57, nos. 1–2, pp. 41. DOI: 10.1016/S0166-3542(02)00199-7.CrossRefGoogle Scholar
  14. 14.
    Zeglis, B.M., Divilov, V., and Lewis, J.S., J. Med. Chem., 2011, vol. 54, no. 7, pp. 2391. DOI: 10.1021/jm101532u.CrossRefGoogle Scholar
  15. 15.
    Rosu, T., Pahontu, E., Pasculescu, S., Georgescu, R., Stanica, N., Curaj, A., Popescu, A., and Leabu, M., Eur. J. Med. Chem., 2010, vol. 45, no. 4, pp. 1627. DOI: 10.1016/j.ejmech.2009.12.015.CrossRefGoogle Scholar
  16. 16.
    Gazieva, G.A., Polyboyarov, P.A., Popov, L.D., Kolotyrkina, N.G., and Kravchenko, A.N., Synthesis, 2012, vol. 44, no. 21, pp. 3366. DOI: 10.1055/s-0032-1317194.CrossRefGoogle Scholar
  17. 17.
    Cammi, R., Mennucci, B., and Tomasi, J., J. Phys. Chem. A, 2000, vol. 104, no. 23, pp. 5631. DOI: 10.1021/jp000156l.CrossRefGoogle Scholar
  18. 18.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, pp. 11623. DOI: 10.1021/j100096a001.CrossRefGoogle Scholar
  19. 19.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, pp. 5648. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  20. 20.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, no. 2, pp. 785. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  21. 21.
    Popov, L.D., Mishchenko, A.V., Tupolova, Yu.P., Levchenkov, S.I., Minin, V.V., Ugolkova, E.A., Efimov, N.N., Lukov, V.V., Shcherbakov, I.N., Kogan, V.A., Zubenko, A.A., and Askalepova, O.I., Russ. J. Gen. Chem., 2011, vol. 81, no. 8, pp. 1691. DOI: 10.1134/S107036321108018CrossRefGoogle Scholar
  22. 22.
    Rakitin, Yu.V. and Kalinnikov, V.T.. Sovremennaya maghetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.Google Scholar
  23. 23.
    Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  24. 24.
    Zhurko, G.A. and Zhurko, D.A., Chemcraft ver. 1.6 (build 338). http://www.chemcraftprog.com.

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • L. D. Popov
    • 1
  • G. A. Gazieva
    • 2
  • A. N. Kravchenko
    • 2
  • Yu. N. Tkachenko
    • 1
  • O. I. Askalepova
    • 1
  • S. I. Levchenkov
    • 3
  • T. B. Karpova
    • 2
  • Yu. P. Tupolova
    • 1
  • V. A. Kogan
    • 1
  1. 1.Chemical DepartmentSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Southern Scientific Center of the Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations