Skip to main content
Log in

Mechanism of thermal oxidation of silicon carbide modified by chromium oxide structures

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Differential thermal analysis (DTA) and X-ray photoelectron spectroscopy (XPS) were used to study the oxidation of dispersed silicon oxide modified with chromium oxide structures by means of molecular layering, under linear heating in air to 1450°C. The mechanism of surface transformations of silicon carbide during its thermal oxidation was considered. It was shown that the oxidation resistance of the samples increased with increasing concentration of chromium in the surface film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gnesin, G.G., Karbidokremnievye materialy (Silicon Carbide Materials), Moscow: Metallurgiya, 1977.

    Google Scholar 

  2. Lebedev, A.A., Ivanov, A.M, and Strokan, N.B., Fiz. Tekh. Poluprovodn., 2004, vol. 38, no. 2, p. 129.

    Google Scholar 

  3. Willander, M., Friesel, M., Wahab, Q., and Straumal, B., J. Mater. Sci. Mater. Electronics, 2006, vol. 17. p. 1. DOI: 10.1007/s10854-005-5137-4.

    Article  CAS  Google Scholar 

  4. Miroshnichenko, L.V., Malygin, A.A., and Kol’tsov, S.I., Ogneupory, 1985, no. 2, p. 225.

    Google Scholar 

  5. Benfdila, A. and Zekentes, K., African Phys. Rev., 2010, vol. 4, p. 25.

    Google Scholar 

  6. Bell, F.H. and Joubert, O., J. Vac. Sci. Technol. B, 1996, vol. 14, no. 4, p. 2493. DOI: 10.1116/1.588758.

    Article  CAS  Google Scholar 

  7. Binner, J. and Zhang, Y., J. Mater. Sci. Lett., 2001, vol. 20, p. 123. DOI: 10.1023/A:1006734100499.

    Article  CAS  Google Scholar 

  8. Libertino, S., Giannazzo, F., Aiello, V., Scandurra, A., Sinatra, F., Renis, M., and Fichera, M., Langmuir, 2008, vol. 24, p. 1965. DOI: 10.1021/la7029664.

    Article  CAS  Google Scholar 

  9. Nefedov, V.I. and Cherepin, V.T., Fizicheskie metody issledovaniya poverkhnosti tverdykh tel (Physical Methods of Research of the Surface of Solids), Moscow: Nauka, 1983.

    Google Scholar 

  10. Handbook of the Physicochemical Properties of the Elements, Samsonov, G.V., Eds., Springer, 1968.

    Google Scholar 

  11. Anisimov, K.S., Malkov, A.A., Dubrovenskii, S.D., and Malygin, A.A., Russ. J. Appl. Chem., 2011, vol. 84, no. 8, p. 1299. DOI: 10.1134/S1070427211080015.

    Article  CAS  Google Scholar 

  12. Jacobson, N.S. and Myers, N.L., Oxid. Metals, 2011, vol. 75, nos. 1–2. p. 1. DOI: 10.1007/s11085-010-9216-4.

    Article  CAS  Google Scholar 

  13. Ripan, R. and Chetyanu, I., Neorganicheskaya khimiya. Khimiya metallov (Inorganic Chemistry. Chemistry of Metals), Moscow: Mir, 1972, vol. 2.

  14. Berthod, P., Oxid. Metals, 2005. vol. 64, nos. 3–4, p. 235. DOI: 10.1007/s11085-005-6562-8.

    Article  CAS  Google Scholar 

  15. Kratkii spravochnik fiziko-khimicheskih velichin (Concise Reference Book of Physicochemical Values), Ravdel’, A.A. and Ponomareva, A.M., Eds., Leningrad: Khimiya, 1983.

    Google Scholar 

  16. Chase, M.W., Jr., J. Phys. Chem. Ref. Data, 1998, monograph 9, p. 1.

    Google Scholar 

  17. Takano, K., Nitta, H., Seto, H., Lee, C.G., Yamada, K., Yamazaki, Y., Sato, H., Takeda, S., Toya, E., and Iijima, Y., Sci. Tech. Adv. Mater., 2001, vol. 2, p. 381. DOI: 10.1016/S14686996(01)00015-8.

    Article  CAS  Google Scholar 

  18. Zhang, Yu-Iei, Li, He-Jun, Li, Ke-Zhi, Fei, Jie, and Zeng, Xie-Rong, New Carbon Mater., 2012, vol. 27, no. 2, p. 105. DOI: 10.1016/S1872-5805(12)60006-7.

    Article  CAS  Google Scholar 

  19. Kol’tsov, S.I., Malygin, A.A., and Aleskovskii, V.B., Zh. Obshch. Khim., 1979, vol. 49, no. 9, p. 1936.

    Google Scholar 

  20. http://www.chem.msu.su/Zn/Cr/print-CrO2Cl2.html .

  21. Gorelik, S.S. and Dashevskii, M.Ya., Materialovedenie poluprovodnikov i dielektrikov (Materials Science of Semiconductors and Dielectrics), Moscow: Mosk. Inst. Stali Splavov, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Malkov.

Additional information

Original Russian Text © K.S. Anisimov, A.A. Malkov, A.A. Malygin, 2014, published in Zhurnal Obshchei Khimii, 2014, Vol. 84, No. 12, pp. 1954–1961.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, K.S., Malkov, A.A. & Malygin, A.A. Mechanism of thermal oxidation of silicon carbide modified by chromium oxide structures. Russ J Gen Chem 84, 2375–2381 (2014). https://doi.org/10.1134/S1070363214120032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363214120032

Keywords

Navigation