Russian Journal of General Chemistry

, Volume 84, Issue 10, pp 1970–1978 | Cite as

Binuclear complexes of copper(II) with 1′-phthalazinylhydrazones of substituted salicylic aldehydes: Physico-chemical study and quantum-chemical simulation

  • S. I. Levchenkov
  • L. D. Popov
  • I. N. Shcherbakov
  • V. G. Vlasenko
  • A. A. Tsaturyan
  • S. S. Beloborodov
  • A. M. Ionov
  • V. A. Kogan
Article

Abstract

Binuclear complexes of copper(II) with 1′-phthalazinylhydrazones of substituted salicylic aldehydes have been prepared and studied. Antiferromagnetic exchange interaction between copper(II) ions has been revealed in all the complexes. Taking advantage of quantum-chemical simulation, we have investigated the influence of the complexes structural isomerism on the character of the exchange interaction between the paramagnetic centers. X-ray absorbance spectroscopy afforded the structural parameters of coordination spheres of copper(II) ions; it has been demonstrated that dimerization occurred via the nitrogen atoms of phthalazine fragments.

Keywords

phthalazinylhydrazones copper(II) coordination isomerism magnetochemistry exchange interaction density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zelenin, K.N., Horseeva, L.A., and Alekseev, V.V., Khim.-Farm. Zh., 1992, vol. 26, no. 5, p. 30.Google Scholar
  2. 2.
    Segura-Pacheco, B., Trejo-Becerril, C., Perez-Cardenas, E., Taja-Chayeb, L., Mariscal, I., Chavez, A., Acuna, C., Salazar, A.M., Lizano, M., and Duenas-Gonzalez, A., Clin. Cancer Res., 2003, vol. 9, no. 5, p. 1596.Google Scholar
  3. 3.
    Kogan, V.A., Levchenkov, S.I., Popov, L.D., and Shcherbakov, I.N., Russ. J. Gen. Chem., 2009, vol. 79, no. 12, p. 2767. DOI: 10.1134/S1070363209120354.CrossRefGoogle Scholar
  4. 4.
    Nfor, E.N., Husian, A., Majoumo-Mbe, F., Njah, I.N., Offiong, O.E., and Bourne, S.A., Polyhedron, 2013, vol. 63, p. 207. DOI: 10.1016/j.poly.2013.07.028.CrossRefGoogle Scholar
  5. 5.
    Mochon, M.C., Gallego, M.C., and Perez, A.G., Talanta., 1986, vol. 33, no. 7, p. 627. DOI: 10.1016/0039-9140(86)80144-8.CrossRefGoogle Scholar
  6. 6.
    Gallego, M.C., Mochon, M.C., Rodriguez, M.T., and Perez, A.G., Mikrochim. Acta., 1992, vol. 109, nos. 5–6, p. 301. DOI: 10.1007/BF01242485.CrossRefGoogle Scholar
  7. 7.
    El-Sherif, A.A., Shoukry, M.M., and Abd-Elgawad, M.M.A., Spectrochim. Acta. (A), 2012, vol. 98, p. 307. DOI: 10.1016/j.saa.2012.08.034.CrossRefGoogle Scholar
  8. 8.
    Kogan, V.A. and Lukov, V.V., Koord. Khim., 1993, vol. 19, no. 6, p. 476.Google Scholar
  9. 9.
    Shcherbakov, I.N., Popov, L.D., Levchenkov, S.I., Morozov, A.N., Kogan, V.A., and Vikrishchuk, A.D., Russ. J. Gen. Chem., 2009, vol. 79, no. 4, p. 826. DOI: 10.1134/S1070363209040240.CrossRefGoogle Scholar
  10. 10.
    Tupolova Yu.P., Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Suponitskii, K.Yu., Ionov, A.M., and Kogan, V.A., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 552. DOI: 10.1134/S1070328411070128.CrossRefGoogle Scholar
  11. 11.
    Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., Levchenkov, S.I., Popov, L.D., Kogan, V.A., Tupolova Yu.P., Zubavichus Ya.V., Trigub, A.L., and Soldatov, A.V., J. Struct. Chem., 2012, vol. 53, no. 2, p. 295. DOI: 10.1134/S0022476612020138.CrossRefGoogle Scholar
  12. 12.
    Levchenkov, S.I., Popov, L.D., Shcherbakov, I.N., Aleksandrov, G.G., Zubenko, A.A., and Kogan, V.A., J. Struct. Chem., 2013, vol. 54, no. 5, p. 952. DOI: 10.1134/S0022476613050168.CrossRefGoogle Scholar
  13. 13.
    Kahn, O., Molecular Magnetism, New York: VCH Publishers, 1993.Google Scholar
  14. 14.
    Abramenko, V.L., Garnovskii, A.D., and Abramenko, Yu.V., Koord. Khim., 1994, vol. 20, no. 1, p. 39.Google Scholar
  15. 15.
    Lukov, V.V., Kogan, V.A., Bogatyreva, E.V., Anisimova, V.A., and Starikov, A.G., Zh. Neorg. Khim., 1989, vol. 34, no. 10, p. 2554.Google Scholar
  16. 16.
    Bogatyreva, E.V., Kogan, V.A., Lukov, V.V., and Lokshin, V.A., Zh. Neorg. Khim., 1990, vol. 35, no. 8, p. 2010.Google Scholar
  17. 17.
    Lukov, V.V., Tupolova Yu.P., Kogan, V.A., Popov, L.D., Russ. J. Coord. Chem., 2003, vol. 29, no. 5, p. 335. DOI: 10.1023/A: 1023675801876.CrossRefGoogle Scholar
  18. 18.
    Levchenkov, S.I., Kogan, V.A., and Lukov, V.V., Zh. Neorg. Khim., 1993, vol. 38, no. 12, p. 1992.Google Scholar
  19. 19.
    Levchenkov, S.I., Kogan, V.A., and Lukov, V.V., Zh. Neorg. Khim., 1993, vol. 38, no. 12, p. 1992.Google Scholar
  20. 20.
    Lukov, V.V., Levchenkov, S.I., and Kogan, V.A., Zh. Neorg. Khim., 1997, vol. 42, no. 4, p. 606.Google Scholar
  21. 21.
    Lukov, V.V., Levchenkov, S.I., and Kogan, V.A., Coord. Khim., 1998, vol. 24, no. 12, p. 946.Google Scholar
  22. 22.
    Kogan, V.A., Lukov, V.V., Levchenkov, S.I., Antipin, M.Yu., and Shishkin, O.V., Mendeleev Commun., 1998, no. 4, p. 145. DOI: 10.1070/MC1998v008n04-ABEH000972.Google Scholar
  23. 23.
    Iskander, M.F., El-Sayed, L., Salem, N.M.H., Haase, W., Linder, H.J., and Foro, S., Polyhedron, 2004, vol. 23, no. 1, p. 23. DOI: 10.1016/j.poly.2003.09.022.CrossRefGoogle Scholar
  24. 24.
    Starikov, A.G., Kogan, V.A., Lukov, V.V., Minkin, V.I., and Minyaev, R.M., Russ. J. Coord. Chem., 2009, vol. 35, no. 8, p. 616. DOI: 10.1134/S1070328409080090.CrossRefGoogle Scholar
  25. 25.
    Tandon, S.S., Thompson, L.K., and Hynes, R.C., Inorg. Chem., 1992, vol. 31, no. 11, p. 2210. DOI: 10.1021/ic00037a040.CrossRefGoogle Scholar
  26. 26.
    Brooker, S., Davidson, T.C., Hay, S.J., Kelly, R.J., Kennepohl, D.K., Pliege, P.G., Moubaraki, B., Murray, K.S., Bill, E., and Bothe, E., Coord. Chem. Rev., 2001, vols. 216–217, p. 3. DOI: 10.1016/S0010-8545 (00)00399-4.CrossRefGoogle Scholar
  27. 27.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Kogan, V.A., and Tupolova Yu.P., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493. DOI: 10.1134/S1070363210030217.CrossRefGoogle Scholar
  28. 28.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Y.P., Kogan, V.A., and Lukov, V.V., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392. DOI: 10.1080/00958970701338796.CrossRefGoogle Scholar
  29. 29.
    Shcherbakov, I.N., Levchenkov, S.I., Tupolova Yu.P., Popov, L.D., Vlasenko, V.G., Zubavichus, Y.V., Lukov, V.V., and Kogan, V.A., Eur. J. Inorg. Chem., 2013, vol., 2013, no. 28, p. 5033. DOI: 10.1002/ejic.201300670.Google Scholar
  30. 30.
    Ginsberg, A.P., J. Am. Chem. Soc., 1980, vol. 102, no. 1, p. 111. DOI: 10.1021/ja00521a020.CrossRefGoogle Scholar
  31. 31.
    Noodleman, L., Peng, C.Y., Case, D.A., and Mouesca, J.-M., Coord. Chem. Rev., 1995, vol. 144, p. 119. DOI: 10.1016/0010-8545(95)07011-L.CrossRefGoogle Scholar
  32. 32.
    Lacroix, P.G. and Daran, J.-C., J. Chem. Soc., Dalton Trans., 1997, no. 8, p. 1369. DOI: 10.1039/A607166J.Google Scholar
  33. 33.
    Soda, T., Kitagawa, Y., Onishi, T., Takano, Y., Shigeta, Y., Nagao, H., Yoshioka, Y., and Yamaguchi, K., Chem. Phys. Lett., 2000, vol. 319, nos. 3–4, p. 223.CrossRefGoogle Scholar
  34. 34.
    Sangeetha, N.R., Baradi, R., Gupta, R., Pal, C.K., Manivannan, V., and Pal, S., Polyhedron, 1999, vol. 18, no. 10, p. 1425. DOI: 10.1016/S0277-5387(98)00449-5.CrossRefGoogle Scholar
  35. 35.
    Haba, P.M., Diouf, O., Sy, A., Gaye, M.L., Sall, A.S., Barry, A.H., and Jouini, T., Z. Kristallogr., 2005, vol. 220, no. 3, p. 479. DOI: 10.1524/ncrs.2005.220.3.479.Google Scholar
  36. 36.
    Chan, S.C., Koh, L.L., Leung, P.-H., Ranford, J.D., and Sim, K.Y., Inorg. Chim. Acta, 1995, vol. 236, nos. 1–2, p. 101. DOI: 10.1016/0020-1693(95)04623-H.CrossRefGoogle Scholar
  37. 37.
    Roth, A., Buchholz, A., Gärtner, V., Malassa, A., Görls, H., Vaughan, G., and Plass, W., Z. Anorg. Allgem Chem., 2007, vol. 633, nos. 11–12, p. 2009. DOI: 10.1002/zaac.200700249.CrossRefGoogle Scholar
  38. 38.
    Simonov, Yu.A., Bourosh, P.N., Yampol’skaya, M.A., Gerbeleu, N.V., Sobolev, A.N., and Malinovskii, T.I., Koord. Khim., 1990, vol. 16, no. 8, p. 1072.Google Scholar
  39. 39.
    Yamamoto, T., X-Ray Spectrom., 2008, vol. 37, p. 572. DOI: 10.1002/xrs.1103.CrossRefGoogle Scholar
  40. 40.
    Kochubei, D.I., Babanov, Yu.A., Zamaraev, K.I., Vedrinskii, R.V., Kraizman, V.L., Kulipanov, G.N., Mazalov, L.N., Skrinskii, A.N., Fedorov, V.K., Hel’mer, B.Yu., and Shuvaev, A.T., Rentgenospektral’nyi metod izucheniya struktury amorfnykh tel: EXAFS-spektroskopiya (X-Ray Method for Studying the Structure of Amorphous Solids: EXAFS-Spectroscopy). Novosibirsk: Nauka. Sib. Otd., 1988.Google Scholar
  41. 41.
    Newville, M., J. Synchrotron Rad., 2001, no. 8, p. 96. DOI: 10.1107/S0909049500016290.Google Scholar
  42. 42.
    Zabinski, S.I., Rehr, J.J., Ankudinov, A., and Alber, R.C., Phys. Rev. (B), 1995, vol. 52, p. 2995. DOI: 10.1103/PhysRevB.52.2995.CrossRefGoogle Scholar
  43. 43.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648. DOI: 10.1063/1.464913.CrossRefGoogle Scholar
  44. 44.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. (B), 1988, vol. 37, no. 2, p. 785. DOI: 10.1103/PhysRevB.37.785.CrossRefGoogle Scholar
  45. 45.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., GAUSSIAN 03, Revision, D.01. Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  46. 46.
    Zhurko, G.A. and Zhurko, D.A., Chemcraft ver. 1.6 (build 338). http://www.chemcraftprog.com.

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • L. D. Popov
    • 2
  • I. N. Shcherbakov
    • 2
  • V. G. Vlasenko
    • 2
  • A. A. Tsaturyan
    • 2
  • S. S. Beloborodov
    • 2
  • A. M. Ionov
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussia
  2. 2.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations