Skip to main content
Log in

Electric discharge in liquids as technique to obtain high-dispersed materials based on metals of IB group

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Nowadays, there is an intensive development of the electric arc discharge method, first proposed in 1922 by T. Svedberg. That method is an effective tool for the synthesis of nanomaterials such as metals, oxides, binary compounds and, in some cases, has undoubted advantages compared to the other methods. In particular, the formation of silver and gold nanoparticles is possible in the absence of any reductants and surfactants. The copper nanostructures synthesis is based on the more cost effective and productive technology compared to the other physical methods. In this article, the main achievements and prospects for the application of the electric discharge method in liquid for the synthesis of the silver, gold and copper nanostructures are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eliseev, A.A. and Lukashin, A.V., Funktsional’nye materialy (Functional Materials), Moscow: Fizmatlit, 2010.

    Google Scholar 

  2. Gusev, A.I., Nanotekhnologii, nanostruktury, nanomaterialy (Nanotechnologies, Nanostructures, and Nanomaterials), Moscow: Fizmat, 2005.

    Google Scholar 

  3. Krutyakov, Yu.A., Kudrinskii, A.A., Olenin, A.Yu., and Lisichkin, G.V., Russ. Chem. Rev., 2008, vol. 77, no. 3, p. 233.

    Article  CAS  Google Scholar 

  4. Svedberg, T., Herstellung Kolloider Liisungen Anorganischer Stoffe, Dresden-Leipzig, 1922.

    Google Scholar 

  5. Lunina, M.A., and Novozhilov, Yu.A., Kolloid. Zh., 1969, vol. 21, no. 3, p. 467.

    Google Scholar 

  6. Rutberg, F.G., Gusarov, V.V., Kolikov, V.A., Voskresenskaya, I.P., Snegov, V.N., Stogov, A.Yu., and Cherepkova, I.A., Zh. Tekh. Fiz., 2012, vol. 82, no. 12, p. 33.

    Google Scholar 

  7. Iijima, S., Nature, 1991, vol. 354, pp. 56–58.

    Article  CAS  Google Scholar 

  8. Bera, D., Kuiry, S.C., McCutchen, M., Seal, S., Heinrich, H., and Slane, G.C., J. App. Phys., 2004, vol. 96, p. 5152.

    Article  CAS  Google Scholar 

  9. Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., and Amaratunga, G.A.J., Nature, 2001, pp. 506–507.

    Google Scholar 

  10. Ashkarran, A.A., Current Applied Physics, 2010, vol. 10, pp. 1442–1447.

    Article  Google Scholar 

  11. Ashkarran, A.A., Iraji Zad, A., Mahdavi, S.M., Ahadian, M.M., and Hormozi Nezhad, M.R., App. Phys. A, 2009, vol. 96, pp. 423–428.

    Article  CAS  Google Scholar 

  12. Ashkarran, A.A., J. Theor. Appl. Phys., 2012, pp. 6–14.

    Google Scholar 

  13. Lung, J.-K., Huang, J.-C., Tien, D.-C., Liao, C.-Yu, Tseng, K.-H., Tsung, T.-T., Kao, W.-S., Tsai, T.-H., Jwo, C.-S., Lin, H.-M., and Stobinski, L., J. Alloys and Comp., 2007, vols. 434–435, pp. 655–658.

    Article  Google Scholar 

  14. Liu, S.-M., Kobayashi, M., Sato, S., and Kimura, K., Chem. Common., 2005, pp. 4690–4692.

    Google Scholar 

  15. Ashkarran, A.A., Iraji Zad, A., Mahdavi, S.M., and Ahadian, M.M., App. Phys. A, 2010, vol. 100, pp. 1097–1102.

    Article  CAS  Google Scholar 

  16. Ashkarran, A.A., Kavianipour, M., Aghigh, S.M., Ahmadi Afshar, S.A., Saviz, S., and Iraji Zad, A., J. Cluster Sci., 2010, vol. 21, pp. 753.

    Article  CAS  Google Scholar 

  17. Ashkarran, A.A., Aghigha, S.M., Ahmadi Afshar, S.A., Kavianipour, M., and Ghorannevissa, M., Synthesis and Reactivity in Inorganic, Metal-Organic, and Nanometal Chemistry, 2011, no. 5.

    Google Scholar 

  18. Parkansky, N., Glikman, L., Beilis, I.I., Alterkop, B., Boxman, R.L., Rosenberg, Yu., and Barkay, Z., Plasma Chemistry and Plasma Processing, 2008, vol. 28, no. 3, pp. 365–375.

    Article  CAS  Google Scholar 

  19. Eubank, P.T., Patel, M.R., Barrufet, M.A., and Bozurt, B., J. App. Phys., 1993, vol. 73, no. 11, p. 7900.

    Article  CAS  Google Scholar 

  20. Dhas, N.A., Raj, C.P., and Gedanken, A., Chem. Mater., 1998, vol. 10, pp. 1446–1452.

    Article  CAS  Google Scholar 

  21. Ebert, G.W. and Rieke, R.D., J. Org. Chem., 1988, vol. 53, pp. 4482–4488.

    Article  CAS  Google Scholar 

  22. Chen, T., Chen, S., Sheu, H., and Yeh, C., J. Phys. Chem. B, 2002, vol. 106, pp. 9717–9722.

    Article  CAS  Google Scholar 

  23. Vitulli, G., Bernini, M., Bertozzi, S., Pitzalis, E., Salvadori, P., Coluccia, S., and Martra, G., Chem. Mater., 2002, vol. 14, pp. 1183–1186.

    Article  CAS  Google Scholar 

  24. Heino, P. and Ristolainen, E., J. Nanostruc. Mater., 1999, vol. 11, p. 587.

    Article  CAS  Google Scholar 

  25. Frietscj, M., Zudock, F., Goschnick, J., and Bruns, M., Sens. and Actuat. B, 2000, vol. 65, p. 379.

    Article  Google Scholar 

  26. Maruyama, T., Solar Energy Materials and Solar Cells, 1998, vol. 56, pp. 85–92.

    Article  CAS  Google Scholar 

  27. Rakhshani, A.E., Solid-State Electronics, 1986, vol. 29, no. 1, pp. 7–17.

    Article  CAS  Google Scholar 

  28. Podhájecký, P., Zábrancký, Z., and Novák, P., Electrochim. Acta, 1990, vol. 35, pp. 245–249.

    Article  Google Scholar 

  29. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett., 1987, vol. 58, pp. 908–910.

    Article  CAS  Google Scholar 

  30. Lee, D.W. and Kim, B.K., Mater. Lett., 2004, vol. 58, p. 378.

    Article  CAS  Google Scholar 

  31. Xie, S.Y., Ma, Z.J., Wang, C.F., Lin, S.C., Jiang, Z.Y., Huang, R.B., and Zheng, L.S., J. Solid State Chem., 2004, vol. 177, pp. 3743–3747.

    Article  CAS  Google Scholar 

  32. Kassaee, M.Z., Buazar, F., and Motamedi, E., J. Nanomater., 2010, p. 403197.

    Google Scholar 

  33. Lo, C.H., Tsung, T.T., and Chen, L.C., J. Crystal Growth, 2005, vol. 277, pp. 636–642.

    Article  CAS  Google Scholar 

  34. Lo, C.H., Tsung, T.T., Chen, L.C., Su, C.H., and Lin, H.M., J. Nanopart. Res., 2005, vol. 7, pp. 313–320.

    Article  CAS  Google Scholar 

  35. Kao, M.J., Lo, C.H., Tsung, T.T., and Lin, H.M., Materials Science Forum, 2006, vols. 505–507, pp. 49–54.

    Article  Google Scholar 

  36. Kao, M.J., Lo, C.H., Tsung, T.T., Wu, Y.Y., Jwo, C.S., and Lin, H.M., J. Alloys Compd., 2007, vols. 434–435, pp. 672–674.

    Article  Google Scholar 

  37. Chen, S.H., Fan, Z., and Carroll, D.L., J. Phys. Chem. B, 2002, vol. 106, p. 10777.

    Article  CAS  Google Scholar 

  38. Yu, Y.Y., Chang, S.S., Lee, C.L., and Wang, C.R.C., J. Phys. Chem. B, 1997, vol. 101, p. 6661.

    Article  CAS  Google Scholar 

  39. Yao, W.T., Yu, S.H., Zhou, Y., Jiang, J., Wu, Q.S., Zhang, L., and Jiang, J., J. Phys. Chem. B, 2005, vol. 109, pp. 14011–14016.

    Article  CAS  Google Scholar 

  40. Tavares, J. and Coulombe, S., Powder Technology, 2011, vol. 210, pp. 132–142.

    Article  CAS  Google Scholar 

  41. Swanson, E.J., Tavares, J., and Coulombe, S., IEEE Transactions on Plasma Science, 2008, vol. 36, no. 4, pp. 886–887.

    Article  CAS  Google Scholar 

  42. Qin, C. and Coulombe, S., Plasma Sources Science and Technology, 2007, vol. 16, pp. 240–249.

    Article  CAS  Google Scholar 

  43. Tavares, J., Swanson, E.J., and Coulombe, S., Plasma Processes and Polymers, 2008, vol. 5, no. 8, pp. 759–769.

    Article  CAS  Google Scholar 

  44. Delaportas, D., Svarnas, P., Alexandrou, I., Georga, S.N., Krontiras, C.A., Xanthopoulos, N.I., Siokou, A., and Chalker, P.R., Mater. Lett., 2011, vol. 65, pp. 2337–2340.

    Article  CAS  Google Scholar 

  45. Reddy, G.A.K., Joy, J.M., Mitra, T., Shabnam, S., and Shilpa, T., Inter. J. Adv. in Pharmac. Sci., 2012, vol. 2, no. 1, pp. 9–15.

    Google Scholar 

  46. Ashkarran, A.A., Iraji Zad, A., Ahadian, M.M., Hormozi Nezhad, M.R., Eur. Phys. J.: App. Physics, 2009, vol. 48, p. 10601.

    Google Scholar 

  47. Tien, D.-C., Liao, C.-Y., Huang, J.-C., Tseng, K.-H., Lung, J.-K., Tsung, T.-T., Kao, W.-S., Tsai, T.-H., Cheng, T.-W., Yu, B.-S., Lin, H.-M., and Stobinski, L., Reviews on Advanced Materials Science, 2008, vol. 18, pp. 750–756.

    Google Scholar 

  48. Ghorbani, H.R., Safekordi, A.A., Attar, H., and Sorkhabadib, S.M.R., Chem. Biochem. Eng. Q., 2011, vol. 25, no. 3, pp. 317–326.

    CAS  Google Scholar 

  49. Loa, C.-H., Tsung, T.-T., and Lin, H.M., J. Alloys Compd., 2007, vol. 434–435, pp. 659–662.

    Article  Google Scholar 

  50. Ashkarran, A.A., J. Cluster Sci., 2011, vol. 22, p. 233.

    Article  CAS  Google Scholar 

  51. Tien, D.-C., Chen, L.-C., Thai, N.V., and Ashraf, S., J. Nanomater., 2010, p. 634757.

    Google Scholar 

  52. Tseng, K.-H., Chen, Y.-C., and Shyue, J.-J., J. Nanopart. Res., 2011, vol. 13, pp. 1865–1872.

    Article  CAS  Google Scholar 

  53. Zhou, Y., Yu, S.H., Cui, X.P., Wang, C.Y., and Chen, Z.Y., Chem. Mater., 1999, vol. 11, pp. 545–546.

    Article  Google Scholar 

  54. Ashkarran, A.A., Current Applied Physics, 2010, vol. 10, pp. 1442–1447.

    Article  Google Scholar 

  55. Jain, P.K., Huang, X., El-Sayed, I.H., and El-Sayed, M.A., Accounts of Chemical Research, 2008, vol. 41, p. 1578.

    Article  CAS  Google Scholar 

  56. Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C., J. Phys. Chem. B, 2003, vol. 107, pp. 668–677.

    Article  CAS  Google Scholar 

  57. Pootawang, P., Saito, N., Takai, O., and Lee, S.-Y., Nanotechnology, 2012, vol. 23, p. 395602.

    Article  Google Scholar 

  58. Rosi, N.L. and Mirkin, C.A., Chem. Rev., 2005, vol. 105, pp. 1547–1562.

    Article  CAS  Google Scholar 

  59. Shen, H., Cheng, B., Lu, G., Ning, T., Guan, D., Zhou, Y., and Chen, Z., Nanotechnology, 2006, vol. 17, p. 4274.

    Article  CAS  Google Scholar 

  60. Tseng, K.-H., Huang, J.-C., Liao, C.-Y., Tien, D.-C., and Tsung, T.-T., J. Alloys Compd., 2009, vol. 476, p. 446.

    Article  Google Scholar 

  61. Cho, S.-P., Bratescu, M.A., Saito, N., and Takai, O., Nanotechnology, 2011, vol. 22, p. 455701.

    Article  Google Scholar 

  62. Heo, Y.K., Kim, S.M., and Lee, S.Y., Physica Scripta, 2010, vol. 139, p. 014025.

    Article  Google Scholar 

  63. Takai, O., Pure and Applied Chemistry, 2008, vol. 80, no. 9, pp. 2003–2011.

    Article  CAS  Google Scholar 

  64. Hieda, J., Saito, N., and Takai, O., Surface and Coatings Technology, 2008, vol. 202, pp. 5343–5346.

    Article  CAS  Google Scholar 

  65. Saito, N., Hieda, J., and Takai, O., Thin Solid Films, 2009, vol. 518, pp. 912–917.

    Article  CAS  Google Scholar 

  66. Heo, Y.K. and Lee, S.Y., Metals and Materials International, 2011, vol. 17, no. 6, pp. 943–947.

    Article  CAS  Google Scholar 

  67. Hieda, J., Saito, N., and Takai, O., J. Vacuum Sci. and Tech. A, 2008, vol. 26, p. 854.

    Article  CAS  Google Scholar 

  68. Heo, Y.K. and Lee, S.Y., Metals and Materials International, 2011, vol. 17, no. 3, pp. 431–434.

    Article  CAS  Google Scholar 

  69. Kim, S.M., Kim, G.S., and Lee, S.Y., Mater. Lett., 2008, vol. 62, pp. 4354–4356.

    Article  CAS  Google Scholar 

  70. Ashkarran, A.A., J. Theor. Appl. Phys., 2012, pp. 6–14.

    Google Scholar 

  71. Ashkarran, A.A., Iraji Zad, A., Mahdavi, S.M., Ahadian, M.M., and Hormozi Nezhad, M.R., App. Phys. A, 2009, vol. 96, pp. 423–428.

    Article  CAS  Google Scholar 

  72. Franceschetti, A., Pennycook, S.J., and Pantelides, S.T., Chem. Phys. Lett., 2003, vol. 374, p. 471.

    Article  CAS  Google Scholar 

  73. Puckett, S.D., Heuser, J.A., Keith, J.D., Spendel, W.U., and Pacey, G.E., Talanta, 2005, vol. 66, p. 1242.

    Article  CAS  Google Scholar 

  74. Iijima, S., Japan J. App. Phys., 1987, vol. 26, pp. 357–364.

    Article  CAS  Google Scholar 

  75. Rycenga, M., Cobley, C.M., Zeng, J., Li, W., Moran, C.H., Zhang, Q., Qin, D., and Xia, Y., Chem. Rev., 2011, vol. 111, pp. 3669–3712.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tepanov.

Additional information

Original Russian Text © A.A. Tepanov, Yu.A. Krutyakov, G.V. Lisichkin, 2012, published in Rossiiskii Khimicheskii Zhurnal, 2012, Vol. 56, Nos. 5–6, pp. 18–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepanov, A.A., Krutyakov, Y.A. & Lisichkin, G.V. Electric discharge in liquids as technique to obtain high-dispersed materials based on metals of IB group. Russ J Gen Chem 84, 986–997 (2014). https://doi.org/10.1134/S1070363214050363

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363214050363

Keywords

Navigation