Skip to main content

Interaction of shungite carbon nanoparticles with blood protein and cell components

Abstract

We have analyzed and compared the effects of aqueous dispersion of shungite carbon nanoparticles, fullerene C60, and nanodiamonds on structure, dynamics, and thermodynamic and redox properties of blood proteins (serum albumin and hemoglobin), proteins of erythrocyte ghost membranes as well as on erythrocyte integrity and aggregation.. All the nanomaterials dispersions have induced similar effects; however, nanodiamonds have not influences the redox properties. Basing on the results, the experimental and theoretical approaches presented can be employed to estimate the effects of biological structures contact with the nanoparticles on the bioreactivity.

This is a preview of subscription content, access via your institution.

References

  1. Panessa-Warren, B.J., Maye, M.M., Warren, J.B., and Crosson, K.M., Environ Pollut., 2009, vol. 157, no. 4, pp. 1140–1151.

    CAS  Article  Google Scholar 

  2. Bharali, D.J., Klejbor, I., Stachowiak, E.K., Dutta, P., Roy, I., Kaur, N., Bergey, E.J., Prasad, P.N., and Stachowiak, M.K., Proc. Natl. Acad. Sci USA, 2005, vol. 102, pp. 11539–11544.

    CAS  Article  Google Scholar 

  3. Service, R.F., Science, 2005, vol. 309, no. 5740, pp. 1609–1612.

    Article  Google Scholar 

  4. Nel, A., Xia, T., Madler, L., and Li, N., Science, 2006, vol. 311, pp. 622–627.

    CAS  Article  Google Scholar 

  5. Sayes, C.M., Fortner, J.D., Guo, W., Lyon, D., Boyd, A.M., Ausman, K.D., Tao, Y.J., Sitharaman, B., Wilson, L.J., Hughes, J.B., West, J.L., and Colvin, V., Nano Lett., 2004, vol. 4, no. 10, pp. 1881–1887.

    CAS  Article  Google Scholar 

  6. Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., and Guo, X., Environ. Sci. Technol., 2005, vol. 39, no. 5, pp. 1378–1383.

    CAS  Article  Google Scholar 

  7. Bosi, S., Feruglio, L., Da Ros, T., Spalluto, G., Gregoretti, B., Terdoslavich, M., Decorti, G., Passamonti, S., Moro, S., and Prato, M., J. Med. Chem., 2004, vol. 47, pp. 6711–6715.

    CAS  Article  Google Scholar 

  8. Oberdorster, G., Oberdorster, E., and Oberdorster, J., Environ. Health. Perspectives, 2005, vol. 113, pp. 823–829.

    CAS  Article  Google Scholar 

  9. Wong Shi Kam, N., Jessop, T.C., and Wender, P.A., Dai, H., J. Am. Chem. Soc., 2004, vol. 126, pp. 6850–6851.

    Article  Google Scholar 

  10. Lin, Y.H., Taylor, S., Li, H.P., Fernando, K.A.S., Qu, L.W., Wang, L.R., Gu, B., Zhou, and Sun, Y.P., J. Mat. Chem., 2004, vol. 14, pp. 527–541.

    CAS  Article  Google Scholar 

  11. Lin, Y.H., Lu, F., Tu, Y., and Ren, Z.F., Nano Lett., 2004, vol. 4, pp. 191–195.

    CAS  Article  Google Scholar 

  12. Singh, R., Pantarotto, D., McCarthy D., et.al., J. Am. Chem. Soc., 2005, vol. 127, pp. 4388–4396.

    CAS  Article  Google Scholar 

  13. Price, R.L., Haberstroh, K.M., and Webster, T.J., Med. Biol. Eng. Comp., 2003, vol. 41, no. 3, pp. 372–375.

    CAS  Article  Google Scholar 

  14. Bosi, S., Da Ros, T., Spalluto, G., and Prato, M., Eur. J. Med. Chem., 2003, vol. 38, pp. 913–923.

    CAS  Article  Google Scholar 

  15. Piotrovskii, L.B., Fundamental’nye napravleniya sovremennoi meditsiny (Fundamental Trends of Modern Medicine), St.Petersburg: Rostok, 2005, pp. 195–268.

    Google Scholar 

  16. Chiang, L.Y., US Patent 5648523, 1995.

  17. Reznikov, V.A., Melenevskaya, E.Yu., Litvinova, L.S., and Zgonnik, V.N., Polymer Sci., Ser A, 2000, vol. 42, no. 2, p. 150.

    Google Scholar 

  18. Kasai, H., Okazaki, S., Hanada, T., Okada, S., Oikawa, H., Adschiri, T., Arai, K., Yase, K., and Nakanishi, H., Chem. Lett., 2000, vol. 29, no. 12, pp. 1392–1393.

    Article  Google Scholar 

  19. Wollf, D.J., Mialkowsky, K, Richardson, C.F., and Wilson, C.R., Biochemistry, 2001, vol. 40, no. 1, pp. 37–45.

    Article  Google Scholar 

  20. Karaulova, E.N. and Bagrii, E.I., Russ. Chem. Bull., 1999, vol. 68, no. 11, p. 889.

    CAS  Article  Google Scholar 

  21. Wei, X., Wu, M., Qi, L., and Xu, Z., J. Chem. Soc., Perkin Trans., 1997. vol. 2, pp. 1389.

    Article  Google Scholar 

  22. Andrievsky, G.V., Kosevich, M.V., Vovk, O.M., Shelkovsky, V.S., and Vaschcenko, L.A., J. Chem. Soc. Chem. Commun., 1995, vol. 12, pp. 1281–1282.

    Article  Google Scholar 

  23. Deguchi, S., Alargova, R.G., and Tsujii, K., Langmuir, 2001, vol. 17, pp. 6013–6017.

    CAS  Article  Google Scholar 

  24. Tseluikin, V.N., Tolstova, I.V., Gun’kin, I.F., and Pankst’yanov, A.Yu., Colloid. J., 2005, vol. 67, no 4, p. 522.

    CAS  Article  Google Scholar 

  25. Chiron, J.P., Lamande, J., Moussa, F., Trivin, F., and Ceolin, R., Ann. Pharm. Fr., 2000, vol. 58, no. 3, pp. 170–175.

    CAS  Google Scholar 

  26. Oberdorster, E., Environ. Health Perspect., 2004, vol. 112, no. 10, pp. 1058–1062.

    CAS  Article  Google Scholar 

  27. Sayes, C.M., Gobin, A.M., Ausman, K.D., Mendez, J., West, J.L., and Colvin, V.L., Biomaterials, 2005, vol. 26, no. 36, pp. 7587–7595.

    CAS  Article  Google Scholar 

  28. Bosi, S., Da Ros, T., Castellano, S., Banfi, E., and Prato, M., Bioorg. Med. Chem. Lett., 2000, vol. 10, pp. 1043–1045.

    CAS  Article  Google Scholar 

  29. Kamat G.P., Devasagayam T.P., Priyadarsisni K.I., and Mohan H., Toxicology, 2000, vol. 155, nos. 1–3, pp. 55–61.

    CAS  Article  Google Scholar 

  30. Scharff, P.K., Risch, L., Carta-Abelmann, I.M., Dmytruk, M.M., Bilyi, O.A., Golub, A.V., Khavryuchenko, E.V., Buzaneva, V.L., Aksenov, M.V., Avdeev, Yu.I., et al., Carbon, 2000, vol. 42, p. 1203.

    Article  Google Scholar 

  31. Hurt, R., Monthioux, M., and Kane, A., Carbon, 2006, vol. 44, no. 6, pp. 1028–1033.

    CAS  Article  Google Scholar 

  32. Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M., Moore, V.C., Doyle, C.D., West, J.L., Billups, W.E., Ausman, K.D. and Colvin, V.L., Toxicol. Lett., 2006, vol. 161, no. 2, pp. 135–142.

    CAS  Article  Google Scholar 

  33. Rozhkov, S.P., Kovalevskii, V.V., and Rozhkova, N.N., Russ. J. Phys. Chem., A, 2007, vol. 81, no. 6, p. 952.

    CAS  Article  Google Scholar 

  34. Rozhkova, N.N., Gribanov, A.V., and Khodorkovskii, M.A., Diamond and Related Materials, 2007, vol. 16, pp. 2104–2108.

    CAS  Article  Google Scholar 

  35. Rozhkova, N.N., Nanouglerod shungitov, (Shungites Nanocarbon), Petrozavodsk: Karel’skii Nauchnyi Tsentr RAN, 2011.

    Google Scholar 

  36. Osawa, E., Pure Appl. Chem., 2008, vol. 80, no. 7, pp. 1365–1379.

    CAS  Article  Google Scholar 

  37. Kozinets, G.I., Ryapolova, I.V., Shishkanova, Z.G., Vorob’eva, M.G., and Talalenova, N.N., Prob. Gemat. Transfuziol., 1977, vol. 22, no. 7, pp. 19–21.

    CAS  Google Scholar 

  38. Chernitskii, E.A. and Yamaikina, I.V., Biofiz, 1988, vol. 33, no. 2, pp. 319–323.

    CAS  Google Scholar 

  39. Men’shikov, V.V., Laboratornye metody issledovaniya v klinike (Laboratory Methods in Clinic), Moscow: Meditsina, 1987.

    Google Scholar 

  40. Benesh, R.E., Benesh, R., and Yung, S., Analytical Biochem., 1973, vol. 55, pp. 245–248.

    Article  Google Scholar 

  41. Rozhkova, N.N., Perspectives of Fullerene Nanotechnology, Osawa, E., Ed., Dordrecht: Kluver Academic Pub., 2002, pp. 237–251.

  42. Kaivarainen, A.I., Rozhkov, S.P., Franek, F., and Olshovska, Z., Folia Biologica, 1983, vol. 29, pp. 209–220.

    CAS  Google Scholar 

  43. Kucher, R.V., Kompanets, V.A., and Butuzova, L.F., Struktura iskopaemykh uglei i ikh sposobnost’ k okisleniyu (The Structure of Coals and Their Ability to Oxidize), Kiev: Naukova Dumka, 1980.

    Google Scholar 

  44. Chiang, L.Y., Swirczewski, J.W., Hsu, C.S., Chowdhury, S.K., Cameron, S., and Creegan, K., J. Chem. Soc. Chem. Comun., 1992, vol. 24, pp. 1791–1793.

    Article  Google Scholar 

  45. Yu, C., Bhonsle, J.B., Wang, L.Y., Lin, J.G., Chen, B-J., and Chiang, L.Y., Fullerene Sci. Technol., 1997, vol. 5, pp. 1407–1421.

    CAS  Article  Google Scholar 

  46. Gharbi, N., Pressac, M., Hadchouel, V., Szwarc, H., Wilson, S.R., Moussa, F., Nano Lett., 2005, vol. 5, pp. 2578–2585.

    CAS  Article  Google Scholar 

  47. Arbogast, J.W., Darmanyan, A.P., Foote, C.S., Rubin, Y., Diederich, F.N., Alvarez, M.M., Anz, S.J., and Whetten, R.L., J. Phys. Chem., 1991, vol. 95, no. 1, pp. 11–12.

    CAS  Article  Google Scholar 

  48. Arbogast, J.W., Foote, C.S., and Kao, M., J. Am. Chem. Soc., 1992, vol. 114, no. 6, pp. 2277–2279.

    Article  Google Scholar 

  49. Hotze, E. M., Labille, J., Alvarez, P., and Wiesner, M.R., Environ. Sci. Technol., 2008, vol. 42, no. 11, pp. 4175–4180.

    CAS  Article  Google Scholar 

  50. Goryunov, A.S. and Rozhkov, S.P., Trudy 18 Mezhdunarodnoi konferentsii “Novye informatsionnye tekhnologii v meditsine, biologii, farmakologii i ekologii” (Proc., 18 Int. Conf. “New Information Technologies in Medicine, Biology, Pharmacology, and Ecology”), Gursuf, Ukraine, 2010, cc. 78–80.

    Google Scholar 

  51. Rozhkov, S.P., Goryunov, A.S., Rozhkova, N.N., and Panina, L.K., Abstracts of Papers, 6 Meeting “NMR in Heterogeneous systems,” 2009, St. Petersburg, p. 88.

    Google Scholar 

  52. Goryunov, A.S. and Borisova, A.G., Vest. Nov. Med. Tekhnol., 2009, vol. 16, no. 1, cc. 98–100.

    Google Scholar 

  53. Deguchi, S., Yamazaki, T., Mukai, S., Usami, R., and Horikoshi, K., Chem. Res. Toxicol., 2007, vol. 20, pp. 854–858.

    CAS  Article  Google Scholar 

  54. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., and Kobayashi, K., Protein Eng., 1999, vol. 12, pp. 439–446.

    CAS  Article  Google Scholar 

  55. Raffani, G. and Ganazolli, F., Langmiur, 2003, vol. 19, pp. 3403–3412.

    Article  Google Scholar 

  56. Bondar’, V.S. and Puzyr’, A.P., Konstr. Kompozit. Mater., 2005, no. 4, pp. 80–94.

    Google Scholar 

  57. Rozhkov, S.P., Rozhkova, N.N., Sukhanova, G.A., Borisova, A.G., and Goryunov, A.S., Uglerodnye nanochastitsy v kondensirovannykh sredakh (Carbon Nanoparticles in Condensed Media), Minsk, 2008, pp. 134–139.

    Google Scholar 

  58. Sukhanova, G.A., Borisova, A.G., Rozhkova, N.N., Rozhkov, S.P., and Goryunov, A.S., Trudy 16 Mezhdunarodnoi konferentsii “Novye informatsionnye tekhnologii v meditsine, biologii, farmakologii i ekologii” (Proc., 16 Int. Conf. “New Information Technologies in Medicine, Biology, Pharmacology, and Ecology”), Gursuf, Ukraine, 2008, cc. 390–392.

    Google Scholar 

  59. Norde, W. and Favier, J.P., Colloids Surf., 1992, vol. 64, pp. 87–93.

    CAS  Article  Google Scholar 

  60. Norde, W. and Haynes, C.A., ASC Symp. “Proteins at interfaces II: Fundamentals and applications”, Washington: ASC, 1995, pp. 26–40.

    Book  Google Scholar 

  61. Galisteo, F. and Norde, W., J. Colloid Interface Sci., 1995, vol. 172, pp. 502–509.

    CAS  Article  Google Scholar 

  62. Kondo, A. and Fukuda, H., J. Colloid Interface Sci., 1998, vol. 198, pp. 34–41.

    CAS  Article  Google Scholar 

  63. Huetz, P., Ball, V., Vogel, J.-C., and Schaaf, P., Langmiur, 1995, vol. 11, pp. 3145–3152.

    CAS  Article  Google Scholar 

  64. Bentaleb, Ball, V., Haikel, Y., Vogel, J.-C., and Schaaf, P., Langmiur, 1997, vol. 13, pp. 729–735.

    CAS  Article  Google Scholar 

  65. Cedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., and Linse, S., Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 7, pp. 2050–2055.

    CAS  Article  Google Scholar 

  66. Belgorodsky, B., Fadeev, L., Ittah, V., Benyamini, H., Zelner, S., Huppert, D., Kotlyar, A.V., and Gozin, M., Bioconjugate Chem., 2005, vol. 16, pp. 1058–1062.

    CAS  Article  Google Scholar 

  67. Benyamini, H., Shulman-Peleg, A., Wolfson, H.J., Belgorodsky, B., Fadeev, L., and Gozin, M., Bioconjugate Chem., 2006, vol. 17, no. 2, pp. 378–386.

    CAS  Article  Google Scholar 

  68. Belgorodsky, B., Fadeev, L., and Kolesnik, J., Chem. Bio. Chem., 2006, vol. 7, pp. 1783–1789.

    CAS  Article  Google Scholar 

  69. Rothen-Rutishauser, B.M., Schurch, S., Haenni, B., Kapp, N., and Gehr, P., Environ. Sci. Technol. 2006, vol. 40, no. 14, pp. 4353–4359.

    CAS  Article  Google Scholar 

  70. Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A., and Stark, W.J., Environ. Sci. Technol., 2006, vol. 40, no. 14, pp. 4374–4381.

    CAS  Article  Google Scholar 

  71. Mecke, A., Majoros, I.J., Patri, A.K., Baker, J.R. Jr., Banaszak Holl, M.M, and Orr, B.G., Langmuir, 2005, vol. 21, pp. 10348–10354.

    CAS  Article  Google Scholar 

  72. Hong, S., Bielinska, A.U., Mecke, A., Kezsler, B., Beals, J.L., Shi, X., Balogh, L., Orr, B.G., Baker, J.R. Jr., and Banaszak Holl M.M., Bioconjugate Chem., 2004, vol. 15, pp. 774–782.

    CAS  Article  Google Scholar 

  73. Leroueil, P.R., Hong, S., Mecke, A., Baker, J.R. Jr., Bradford, G. Orr, B.G., and Banaszak Holl, M.M., Acc. Chem. Res., 2007, vol. 40, pp. 335–342.

    CAS  Article  Google Scholar 

  74. Zhang, L. and Granick, S., Nano Lett., 2006, vol. 6, pp. 694–698.

    CAS  Article  Google Scholar 

  75. Tsuchiya, T., Oguri, I., Nakajima, Y., Yamakoshi, Y.N., and Miyata, N., FEBS Lett., 1996, vol. 393, pp. 139–145.

    Article  Google Scholar 

  76. Fortner, J.D., Lyon, D.Y., Sayes, C.M., Boyd, A.M., Falkner, J.C., Hotze, E.M., Alemany, L.B., Tao, Y.J., Guo, W., Ausman, K.D., Colvin, V.L., and Hughes, J.B., Environ. Sci Technol., 2005, vol. 39, no. 11, pp. 4307–4316.

    Article  Google Scholar 

  77. Sirotkin, A.K., Zubarev, V.V., Poznyiakova, L.N., Dumpis, M.A., Muravieva, T.D., Krisko, T.K., Belousova, I.M., Kiselev, O.I., and Piotrovsky, L.B., Fullerenes Nanotubes Carbon Nanostructures, 2006, vol. 14, nos. 2–3, pp. 327–333.

    CAS  Article  Google Scholar 

  78. Nagle, J.F. and Tristram-Nagle, S., Biochim. Biophys. Acta., 2000, vol. 1469, pp. 159–195.

    CAS  Article  Google Scholar 

  79. Tristram-Nagle, S., and Nagle, J.F., Chem. Phys. Lipids., 2004, vol. 127, pp. 3–14.

    CAS  Article  Google Scholar 

  80. Chang, R. and Violi, A., J. Phys. Chem. (B), 2006, vol. 110, pp. 5073–5083.

    CAS  Article  Google Scholar 

  81. Jeng, U.-S., Hsu, C.-H., Lin, T.-L., Wu, C.-M., Chen, H.-L., Tai, L.-A., and Hwang, K.-C., Physica (B), 2005, vol. 357, nos. 1–2, pp. 193–198.

    CAS  Article  Google Scholar 

  82. Lyon, D.Y., Fortner, J.D., Sayes, S.M., Colvin, V.L., and Hughe, J.B., Environ. Toxicol. Chem., 2005, vol. 24, no. 11, pp. 2757–2762.

    CAS  Article  Google Scholar 

  83. Rozhkov, S.P., Goryunov, A.S., Sukhanova, G.A., Borisova, A.G., and Rozhkova, N.N., Abstracts of Papers, Mezhdunarodnoya konf. “Retseptsiya i vnutrikletochnaya signalizatsiya” (Int. Conf. “Reception and Intracellular Signaling”), Pushhino, 2007, pp. 330–333.

    Google Scholar 

  84. Rozhkov, S.P, Sukhanova, G.A., Goryunov, A.S., Borisova, A.G., and Rozhkova, N.N., Uglerodnye nanochastitsy v kondensirovannykh sredakh (Carbon Nanoparticles in Condensed Media), Minsk, 2006, pp. 212–214.

    Google Scholar 

  85. Borisova, A.G., Coll. Papers, Molekulyarnye, membrannye i kletochnye osnovy funktsionirovaniya biosistem (Molecular, Membrane, and Cellular Basis for the Functioning of Biological Systems), Minsk: Pravo i Ekonomika, 2006, vol. 2, pp. 159–161.

    Google Scholar 

  86. Goryunov, A.S., Borisova, A.G., Rozhkov, S.P., Sukhanova, G.A., and Rozhkova, N.N., Tr. KarNTs RAN, Ser. Eksp. Biol., 2009, no. 3, pp. 30–37.

    Google Scholar 

  87. Goryunov A.S., Borisova A.G., Rozhkov S.P., Sukhanova G.A., and Rozhkova N.N., Abstracts of Papers, Mezhdunarodnyi simpozium “Sovremennye problemy i metody ekologicheskoi fiziologii i patologii mlekopitayushchikh, vvedennykh v zookul’turu” (Int. Symp. “Modern Problems and Methods of Environmental Physiology and Pathology of Mammals Introduced in Zooculture”), Petrozavodsk, 2009, pp. 69–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Rozhkov.

Additional information

Original Russian Text © S.P. Rozhkov, A.S. Goryunov, 2012, published in Ekologicheskaya Khimiya, 2012, Vol. 21, No. 1, pp. 18–31.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rozhkov, S.P., Goryunov, A.S. Interaction of shungite carbon nanoparticles with blood protein and cell components. Russ J Gen Chem 83, 2585–2595 (2013). https://doi.org/10.1134/S1070363213130021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363213130021

Keywords

  • Shungite nanocarbon
  • fullerene
  • nanodiamond
  • protein
  • membrane
  • interaction
  • stabilization of structure
  • dynamic complexes
  • oxidative properties