Russian Journal of General Chemistry

, Volume 83, Issue 10, pp 1928–1936 | Cite as

Transition metal complexes with 2,6-Di-tert-butyl-p-quinone 1′-phthalazinylhydrazone

  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
  • S. N. Lyubchenko
  • K. Yu. Suponitskii
  • A. A. Tsaturyan
  • S. S. Beloborodov
  • V. A. Kogan
Article

Abstract

2,6-Di-tert-butyl-p-quinone 1′-phthalazinylhydrazone (HL) was synthesized. Quantum-chemical calculations of the energy of possible tautomeric forms of the hydrazone were performed. The complexes of Zn(II), Hg(II), Ni(II), and Cu(II) of ML2 composition were obtained and studied. The structure of the NiL2 complex was established by XRD. It was shown by DFT-D3 calculations that the cis-structure of the complex is stabilized due to the interligand dispersion interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitaev, Yu.P. and Buzykin, B.N., Gidrazony (Hydrazones), Moscow: Nauka, 1974.Google Scholar
  2. 2.
    Kogan, V.A, Zelentsov, V.V., Larin, G.M., and Lukov, V.V., Kompleksy perekhodnykh metallov s gidrazonami. Fiziko-khimicheskie svoistva i stroenie (Transition Metal Complexes with Hydrazones. Physical and Chemical Properties and Structure), Moscow: Nauka, 1990.Google Scholar
  3. 3.
    Parpiev, N.A., Yusupov, V.G., Yakimovich, S.I., and Sharipov, Kh.G., Atsilgidrazony i ikh kompleksy s perekhodnymi metallami (Acylhydrazones and Their Complexes with Transition Metals), Tashkent: Fan, 1988.Google Scholar
  4. 4.
    Stadler, A.-M. and Harrowfild, J., Inorg. Chim. Acta., 2009, vol. 362, no. 12, p. 4298.CrossRefGoogle Scholar
  5. 5.
    Popov, L.D., Morozov, A.N., Shcherbakov, I.N., Tupolova, Yu.P., Lukov, V.V., and Kogan, V.A., Russ. Chem. Rev., 2009, vol. 78, no. 7, p. 643.CrossRefGoogle Scholar
  6. 6.
    Kogan, V.A., Levchenkov, S.I., Popov, L.D., and Shcherbakov, I.N., Russ. J. Gen. Chem., 2009, vol. 79, no. 12, p. 2767.CrossRefGoogle Scholar
  7. 7.
    Zelenin, K.N., Khorseeva, L.A., and Alekseev, V.V., Khim. Farm. Zh., 1992, vol. 26, no. 5, p. 30.Google Scholar
  8. 8.
    Vicini, P., Incerty, M., Doytchinova, I.A., La Colla, P., Busonera, B., and Loddo, R., Eur. J. Med. Chem., 2006, vol. 48, no. 5, p. 624.CrossRefGoogle Scholar
  9. 9.
    Budagumpi, S., Kulkarni, N.V., Sathisha, M.P., Netalkar, S.P., Revankar, V.K., and Suresh, D.K., Monatsh. Chem., 2011, vol. 142, no. 5, p. 487.CrossRefGoogle Scholar
  10. 10.
    Segura-Pacheco, B., Trejo-Becerril, C., Perez-Cardenas, E., Taja-Chayeb, L., Mariscal, I., Chavez, A., Acuna, C., Salazar, A.M., Lizano, M., and Duenas-Gonzalez, A., Clinical Cancer Res., 2003, vol. 9, no. 5, p. 1596.Google Scholar
  11. 11.
    Arce, C., Segura-Pacheco, B., Perez-Cardenas, E., Taja-Chayeb, L., Candelaria, M., and Duennas-Gonzalez, A., J. Transl. Med., 2006, vol. 4, no. 1, p. 10.CrossRefGoogle Scholar
  12. 12.
    Kaminskas, L.M., Pyke, S.M., and Burcham, P.C., J. Pharmacol. Exper. Therap., 2004, vol. 310, no. 3, p. 1003.CrossRefGoogle Scholar
  13. 13.
    Kaminskas, L.M., Pyke, S.M., and Burcham, P.C., Org. Biomol. Chem., 2004, vol. 2, no. 18, p. 2578.CrossRefGoogle Scholar
  14. 14.
    Knowles, H.J., Tian, Y.M., Mole, D.R., and Harris, A.L., Circ. Res., 2004, vol. 95, no. 2, p. 162.CrossRefGoogle Scholar
  15. 15.
    Reece, P.A., Med. Res. Rev., 1981, vol. 1, no. 1, p. 73.CrossRefGoogle Scholar
  16. 16.
    Haegele, K.D., McLean, A.J., Du Souich, P., Barron, K., Laquer, J., McNay, J.L., Carrier, O., and Brit., J. Clin. Pharmacol., 1978, vol. 5, no. 6, p. 489.Google Scholar
  17. 17.
    Nakashima, K., Shimada, K., and Akiyama, S., Chem. Pharm. Bull., 1985, vol. 33, no. 4, p. 1515.CrossRefGoogle Scholar
  18. 18.
    Razvi, T., Ramalingam, M., and Sattur, P.B., Ind. J. Chem., Sect. B., 1989, vol. 28, no. 11, p. 987.Google Scholar
  19. 19.
    Giorgi, G., Ponticelli, F., Chiasserini, L., and Pellerano, C., J. Chem. Soc., Perkin Trans. 2, 2000, no. 11, p. 2259.Google Scholar
  20. 20.
    Odashima, T., Yamada, M., Yonemori, N., and Ishi, H., Bull. Chem. Soc. Jpn., 1987, vol. 60, no. 9, p. 3225.CrossRefGoogle Scholar
  21. 21.
    Paolucci, G., Stelluto, S., Sitran, S., Ajo, D., Benetollo, F., Polo, A., and Bombieri, G., Inorg. Chim. Acta, 1992, vol. 193, no. 1, p. 57.CrossRefGoogle Scholar
  22. 22.
    Mochon, M.C., Gallego, M.C., and Perez, A.G., Talanta, 1986, vol. 33, no. 7, p. 627.CrossRefGoogle Scholar
  23. 23.
    Mandal, S.K., Thompson, L.K., Newlands, M.J., Charland, J.-P., and Gabe, E.J., Inorg. Chim. Acta, 1990, vol. 178, no. 2, p. 169.CrossRefGoogle Scholar
  24. 24.
    Shoukry, A.A. and Shoukry, M.M., Spectrochim. Acta, A, 2008, vol. 70, no. 3, p. 686.CrossRefGoogle Scholar
  25. 25.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Y.P., Kogan, V.A., and Lukov, V.V., J. Coord. Chem., 2008, vol. 61, no. 3, p. 392.CrossRefGoogle Scholar
  26. 26.
    Shcherbakov, I.N., Popov, L.D., Levchenkov, S.I., Morozov, A.N., Kogan, V.A., and Vikrishchuk, A.D., Russ. J. Gen. Chem., 2009, vol. 79, no. 4, p. 826.CrossRefGoogle Scholar
  27. 27.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Tupolova, Yu.P., Zubenko, A.A., Melkozerova, I.E., Lukov, V.V., and Kogan, V.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 9, p. 1853.CrossRefGoogle Scholar
  28. 28.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Kogan, V.A., and Tupolova, Yu.P., Russ. J. Gen. Chem., 2010, vol. 80, no. 3, p. 493.CrossRefGoogle Scholar
  29. 29.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Minin, V.V., Tupolova, Yu.P., Zubenko, A.A., and Kogan, V.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 12, p. 2501.CrossRefGoogle Scholar
  30. 30.
    Popov, L.D., Shcherbakov, I.N., Levchenkov, S.I., Tupolova, Yu.P., Burlov, A.S., Aleksandrov, G.G., Lukov, V.V., and Kogan, V.A., Russ. J. Coord. Chem., 2011, vol. 37, no. 7, p. 483.CrossRefGoogle Scholar
  31. 31.
    Butcher, R.J., Jasinski, J.P., Yathirajan, H.S., Vijeshd, A.M., and Narayana, B., Acta Cryst E., 2007, vol. 63, no. 9, p. o3674.CrossRefGoogle Scholar
  32. 32.
    Büyükgüngör, O., Odabasoglu, M., Vijesh, A.M., and Yathirajan, H.S., Acta Cryst. E, 2007, vol. 63, no. 10, p. o4084.CrossRefGoogle Scholar
  33. 33.
    Popov, L.D., Levchenkov, S.I., Shcherbakov, I.N., Starikova, Z.A., Kaimakan, E.B., and Lukov, V.V., Russ. J. Gen. Chem., 2012, vol. 82, no. 3, p. 465.CrossRefGoogle Scholar
  34. 34.
    Stephens, P.J., Devlin, F.J., Chabalowski, C.F., and Frisch, M.J., J. Phys. Chem., 1994, vol. 98, no. 45, p. 11623.CrossRefGoogle Scholar
  35. 35.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, no. 7, p. 5648.CrossRefGoogle Scholar
  36. 36.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., B., 1988, vol. 37, no. 2, p. 785.CrossRefGoogle Scholar
  37. 37.
    Rakitin, Yu.V. and Kalinnikov, V.T., Sovremennaya magnetokhimiya (Modern Magnetochemistry), St. Petersburg: Nauka, 1994.Google Scholar
  38. 38.
    Kahn, O., Molecular Magnetism, New York: VCH Publishers, 1993.Google Scholar
  39. 39.
    Kogan, V.A., Lyubchenko, S.N., Shcherbakov, I.N., Ionov, A.M., Tkachev, V.V., Shilov, G.V., and Aldoshin, S.M., Russ. J. Coord. Chem., 2005, vol. 31, no. 8, p. 533.CrossRefGoogle Scholar
  40. 40.
    Kogan, V.A. and Shcherbakov, I.N., Ross. Khim. Zh., 2004, vol. 48, no. 1, p. 69.Google Scholar
  41. 41.
    Grimme, S., Antony, J., Ehrlich, S., and Krieg, H., J. Chem. Phys., 2010, vol. 132, no. 15, p. 154104.CrossRefGoogle Scholar
  42. 42.
    Johnson, E.R. and Becke, A.D., J. Chem. Phys., 2005, vol. 123, no. 2, p. 024101.CrossRefGoogle Scholar
  43. 43.
    Johnson, E.R. and Becke, A.D., J. Chem. Phys., 2006, vol. 124, no. 17, p. 174104.CrossRefGoogle Scholar
  44. 44.
    Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, no. 7, p. 1456.CrossRefGoogle Scholar
  45. 45.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Revision, D.01, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  46. 46.
    Zhurko, G.A., Chemcraft ver. 1.6 (build 338). http://www.chemcraftprog.com.
  47. 47.
    SMART and SAINT, Release 5.0, Area Detector Control and Integration Software, Bruker AXS, Analytical X-Ray Instruments, Madison, Wisconsin, USA, 1998.Google Scholar
  48. 48.
    Sheldrick, G.M., SADABS: A Program for Exploiting the Redundancy of Area-Detector X-Ray Data, Göttingen: Univ. of Göttingen, Germany, 1999.Google Scholar
  49. 49.
    Sheldrick, G.M., Acta Cryst A., 2008, vol. 64, no. 1, p. 112.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • I. N. Shcherbakov
    • 2
  • L. D. Popov
    • 2
  • S. N. Lyubchenko
    • 2
  • K. Yu. Suponitskii
    • 3
  • A. A. Tsaturyan
    • 2
  • S. S. Beloborodov
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific Center of the Russian Academy of SciencesRostov-on-DonRussia
  2. 2.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussia
  3. 3.Nesmeyanov Institute of Organoelemental CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations