Advertisement

Russian Journal of General Chemistry

, Volume 83, Issue 10, pp 1823–1839 | Cite as

Study of geometry and electronic structure of molecules, cation-radicals, and anion-radicals of nitromethane, dimethylnitramine, and ethyl nitrate

  • R. V. Tsyshevsky
  • B. Nguen Van
  • A. G. Shamov
  • G. M. Khrapovskii
Article

Abstract

The geometry of cation-radicals and anion-radicals of nitromethane, dimethylnitramine, and ethyl nitrate have been computed by means of modern quantum-chemical methods. Their electron affinities and ionization potentials have been determined. The validity of the results has been confirmed by comparison with the experiment.

Keywords

General Chemistry Neutral Molecule Nitromethane Nitramine Total Electronic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cottrell, T.L., Graham, T.E., and Reid, T.J., Trans. Faraday Soc., 1951, vol. 47, p. 1089.CrossRefGoogle Scholar
  2. 2.
    Gray, P., Yoffe, A.D., and Roselaar, L., Trans. Faraday Soc., 1955, vol. 51, p. 1489.CrossRefGoogle Scholar
  3. 3.
    Wilde, K.A., Ind. Eng. Chem., 1956, vol. 48, p. 769.CrossRefGoogle Scholar
  4. 4.
    Smith, T.E. and Calvert, J.G., J. Phys. Chem., 1959, vol. 63, p. 1305.CrossRefGoogle Scholar
  5. 5.
    Spokes, G.N. and Benson, S.W., J. Am. Chem. Soc., 1967, vol. 89, p. 2525.CrossRefGoogle Scholar
  6. 6.
    Spokes, G.N. and Benson, S.W., J. Am. Chem. Soc., 1967, vol. 89, p. 6030.CrossRefGoogle Scholar
  7. 7.
    Brill, T.B. and James, K.J., Chem. Rev., 1993, vol. 93, p. 2667.CrossRefGoogle Scholar
  8. 8.
    Pola, J., Farkacova, M., Kubat, P., and Trka, A., J. Chem. Soc., 1984, vol. 80, p. 1499.Google Scholar
  9. 9.
    Shaw, R., Int. J. Chem., 1973, vol. 5, p. 261.Google Scholar
  10. 10.
    Nazin, G.M., Manelis, G.B., and Dubovitskii, D.I., Russ. Chem. Rev., 1968, vol. 37, p. 603.CrossRefGoogle Scholar
  11. 11.
    Nazin, G.M., Manelis, G.B., and Dubovitskii, D.I., Russ. Chem. Rev., 1994, vol. 63, p. 313.CrossRefGoogle Scholar
  12. 12.
    Nazin, G.M., Manelis, G.B., Rubtsov, Yu.I., and Strunin, V.A., Thermal Decomposition and Combustion of Explosives and Propellants, Boca Raton: CRC Press, 2003, p. 376.Google Scholar
  13. 13.
    Wodtke, A.M., Hintsa, E.J., and Lee, Y.T., J. Phys. Chem., 1986, vol. 90, p. 3549.CrossRefGoogle Scholar
  14. 14.
    Shamsutdinov, A.F., Shamsutdinov, T.F., Shamov, A.G., and Khrapkovskii, G.M., Int. J. Quantum Chem., 2007, vol. 107, p. 2343.CrossRefGoogle Scholar
  15. 15.
    Tsyshevsky, R.V., Aristov, I.V., Chachkov, D.V., Shamov, A.G., and Khrapkovskii, G.M., J. Energ. Mater., 2010, vol. 28, p. 318.CrossRefGoogle Scholar
  16. 16.
    Khrapovskii, G.M., Shamov, A.G., Nikolaeva, E.V., and Chachkov, D.V., Russ. Chem. Rev., 2009, vol. 78, p. 903.CrossRefGoogle Scholar
  17. 17.
    Sharia, O. and Kuklja, M.M., J. Phys. Chem. (A), 2010, vol. 114, p. 12656.CrossRefGoogle Scholar
  18. 18.
    Denis, P.A., Ventura, O.N., Le, H.T., and Nguyen, M.T., Phys. Chem. Chem. Phys., 2003, vol. 5, p. 1730.CrossRefGoogle Scholar
  19. 19.
    Manaa, M.R. and Fried, L.E., J. Phys. Chem. (A), 1998, vol. 102, p. 9884.CrossRefGoogle Scholar
  20. 20.
    Kiselev, V.G. and Gritsan, N.P., J. Phys. Chem. (A), 2008, vol. 112, p. 4458.CrossRefGoogle Scholar
  21. 21.
    Khrapovskii, G.M., Rozin, A.M., Tikhomirov, V.A., Shamov, A.G., and Marchenko, G.N., Dokl. Akad. Nauk SSSR, 1998, vol. 298, p. 921.Google Scholar
  22. 22.
    Bhattacharya, A., Guo, Yu., and Bernstein, E.R., Acc. Chem. Res., 2010, vol. 43, p. 1476.CrossRefGoogle Scholar
  23. 23.
    Guo, Y.Q., Bhattacharya, A., and Bernstein, E.R., J. Chem. Phys., 2008, vol. 128, p. 034303.CrossRefGoogle Scholar
  24. 24.
    Zijun Yu. and Bernstein, E.R., J. Chem. Phys., 2011, vol. 135, p. 154305.CrossRefGoogle Scholar
  25. 25.
    Bhattacharya, A., Guo, Yu., and Bernstein, E.R., J. Chem. Phys., 2012, vol. 136, p. 024321.CrossRefGoogle Scholar
  26. 26.
    Walker, I.C. and Fluendy, M.A.D., Int. J. Mass Spectrometry., 2001, vol. 205, p. 171.CrossRefGoogle Scholar
  27. 27.
    Alizadeh, E., Ferreira da Silva 1, F., Zappa 2, F., Mauracher, A., Probst, M., Denifl, S., Bacher, A., Mark, T.D., Limao-Vieira 1, P., and Scheier, P., Int. J. Mass Spectrometry., 2008, vol. 271, p. 15.CrossRefGoogle Scholar
  28. 28.
    Adamowicz, L., J. Chem. Phys., 1989, vol. 91, p. 7787.CrossRefGoogle Scholar
  29. 29.
    Compton, R.N., Carman, H.S., Desfrancois, C., Abdoul-Carime, H., Schermann, J.P., Hendricks, J.H., Lyapustina, S.A., and Bowen, K.H., J. Chem. Phys., 1996, vol. 105, p. 3472.CrossRefGoogle Scholar
  30. 30.
    Gutsev, G.L. and Bartlett, R.J., J. Chem. Phys., 1996, vol. 105, p. 8785.CrossRefGoogle Scholar
  31. 31.
    Arenas, J.F., Otero, J.C., Pelaez, D., Soto, J., and Serrano-Andres, L., J. Chem. Phys., 2004, vol. 121, p. 4127.CrossRefGoogle Scholar
  32. 32.
    Sailer, W., Pelc, A., Matejcik, S., Illenberger, E., Scheier, P., and Mark, T.D., J. Chem. Phys., 2002, vol. 117, p. 7989.CrossRefGoogle Scholar
  33. 33.
    Edtbauer, A., Sulzer, P., Mauracher, A., Mitterdorfer, C., Ferreira da Silva, F., Denifl, S., Mark, T.D., Probst, M., Nunes, Y., Limao-Vieira, P., and Scheier, P., J. Chem. Phys., 2010, vol. 132, p. 134305.CrossRefGoogle Scholar
  34. 34.
    Sulzer, P., Mauracher, A., Denifl, S., Zappa, F., Ptasinska, S., Beikircher, M., Bacher, A., Wendt, N., Aleem, A., Rondino, F., Matejcik, S., Probst, M., Mark, T.D., Scheier, P., Anal. Chem., 2007, vol. 79, p. 6585.CrossRefGoogle Scholar
  35. 35.
    Sulzer, P., Mauracher, A., Denifl, S., Probst, M., Mark, T.D., Scheier, P., and Illenberger, E., Int. J. Mass Spectrometry., 2007, vol. 266, p. 138.CrossRefGoogle Scholar
  36. 36.
    Sulzer, P., Mauracher, A., Ferreira da Silva, F., Denifl, S., Mark, T.D., Probst, M., Limao-Vieira, P., and Scheier, P., J. Chem. Phys., 2009, vol. 131, p. 144304.CrossRefGoogle Scholar
  37. 37.
    Sulzer, P., Rondino, F., Ptasinska, S., Illenberger, E., Mark, T.D., and Scheier, P., Int. J. Mass Spectrometry., 2008, vol. 272, p. 149.CrossRefGoogle Scholar
  38. 38.
    Aluker, E.D., Krechetov, A.G., Mitrofanov, A.Yu., Nurmukhame-tov, D.R., and Kuklja, M.M., J. Phys. Chem., 2011, vol. 115, p. 6893.Google Scholar
  39. 39.
    Ewing, R.G., Atkinson, D.A., Eiceman, G.A., and Ewing, G.J., Talanta, 2001, vol. 54, p. 515.CrossRefGoogle Scholar
  40. 40.
    Walsh, M.E., Talanta, 2001, vol. 54, p. 427.CrossRefGoogle Scholar
  41. 41.
    Nikolaeva, E.V., Candidate Sci. (Chem.) Dissertation, Kazan, 2002Google Scholar
  42. 42.
    Tsyshevskuu, R.V. Candidate Sci. (Chem.) Dissertation, Kazan, 2008.Google Scholar
  43. 43.
    Khrapovskii, G. M., Chachkov, D.V., Nikolaeva, E.V., and Shamov, A.G., Vest. Kazan. Tekh. Univ., 2011, vol. 20, p. 55.Google Scholar
  44. 44.
    Tsyshevsky, R.V., Garifzianova, G.G., Chachkov, D.V., Shamov, A.G., and Khrapkovskii, G.M., J. Energ. Mater., 2009, vol. 27, p. 263.CrossRefGoogle Scholar
  45. 45.
    Sharipov, D.D., Egorov, D.L., Chachkov, D.V., Shamov, A.G., and Khrapkovskii, G.M., Russ., J. Gen. Chem., 2011, vol. 81, no. 11, p. 2273.CrossRefGoogle Scholar
  46. 46.
    Garivzianova, G.G., Tsyshevsky, R.V., Shamov, A.G., and Khrapkovskii, G.M., Int. J. Quantum Chem., 2007, vol. 107, p. 2489.CrossRefGoogle Scholar
  47. 47.
    Olivella, S., Sole Al., McAdoo, D.J., and Griffins, L.L., J. Am. Chem. Soc., 1994, vol. 116, p. 11078.CrossRefGoogle Scholar
  48. 48.
    Moller, C. and Plesset, M.S., Phys. Rev., 1934, vol. 46, p. 0618.CrossRefGoogle Scholar
  49. 49.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  50. 50.
    Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, p. 3865.CrossRefGoogle Scholar
  51. 51.
    Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C., Phys. Rev., 1992, vol. 46, p. 6671.CrossRefGoogle Scholar
  52. 52.
    Perdew, J.P., Burke, K., and Wang, Y., Phys. Rev., 1996, vol. 54, p. 16533.CrossRefGoogle Scholar
  53. 53.
    Handy, N.C. and Cohen, A.J., Mol. Phys., 2001, vol. 9, p. 403–12.CrossRefGoogle Scholar
  54. 54.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev., 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  55. 55.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  56. 56.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 1372.CrossRefGoogle Scholar
  57. 57.
    Grimme, S., J. Chem. Phys., 2006, vol. 124, p. 034108.CrossRefGoogle Scholar
  58. 58.
    Schwabe, T. and Grimme, S., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 4398.CrossRefGoogle Scholar
  59. 59.
    Hohenberg, P. and Kohn, W., Phys. Rev. (B)., 1964, vol. 136, p. 864.CrossRefGoogle Scholar
  60. 60.
    Kohn, W. and Sham, L.J., Phys. Rev. (A)., 1965, vol. 140, p. 1133.CrossRefGoogle Scholar
  61. 61.
    Chai, J.D. and Head-Gordon, M., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 6615.CrossRefGoogle Scholar
  62. 62.
    Chai, J.D. and Head-Gordon, M., J. Chem. Phys., 2008, vol. 128, p. 084106.CrossRefGoogle Scholar
  63. 63.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnen-berg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., GAUSSIAN 09, Rev. A. 1, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  64. 64.
    Taylor, W.D., Allston, T.D., Moscato, M.J., Fazekas, G.B., Kozlowski, R., and Takacs, G.A., Int. J. Chem. Kinet., 1980, vol. 12, p. 231.CrossRefGoogle Scholar
  65. 65.
    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Rel. 15b.Google Scholar
  66. 66.
    Landolt-Bornstein. Group II: Atomic and Molecular Physics, Hellwege, K.H. and Hellwege, A.M., Eds., Berlin: Springer-Verlag, 1976, vol. 7.Google Scholar
  67. 67.
    George, M.V. and Wright, G.F., J. Am. Chem. Soc., 1958, vol. 80, p. 1200.CrossRefGoogle Scholar
  68. 68.
    Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, no. 10, p. 1833.CrossRefGoogle Scholar
  69. 69.
    Sumpter, B.G. and Thompson, D.L., J. Chem. Phys., 1998, vol. 88, p. 6889.CrossRefGoogle Scholar
  70. 70.
    Nigenda, E., McMillen, D.F., and Golden, D.M., J. Phys. Chem., 1989, vol. 93, p. 1124.CrossRefGoogle Scholar
  71. 71.
    Flournoy, J.M., J. Chem. Phys., 1962, vol. 36, p. 1106.CrossRefGoogle Scholar
  72. 72.
    Harris, N.J. and Lammertsma, K., J. Phys. Chem. (A)., 1997, vol. 101, no. 7, p. 1370.CrossRefGoogle Scholar
  73. 73.
    Oxley, J.C., Hiskey, M., Naud, D., and Szekeres, R., J. Phys. Chem., 1992, vol. 96, no. 6, p. 2505.CrossRefGoogle Scholar
  74. 74.
    Velardez, G.F., Alavi, S., and Thompson, D.L., J. Chem. Phys., 2005, vol. 123, p. 074313.CrossRefGoogle Scholar
  75. 75.
    Johnson, M.A. and Truong, T.N., J. Phys. Chem., 1999, vol. 103, p. 9392.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • R. V. Tsyshevsky
    • 1
  • B. Nguen Van
    • 1
  • A. G. Shamov
    • 1
  • G. M. Khrapovskii
    • 1
  1. 1.Kazan National Research Technologic UniversityKazan, TatarstanRussia

Personalised recommendations