Skip to main content
Log in

Computer simulation of interactions in the NH3-CO2-H2O system

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Computer simulation of interactions in the NH3-CO2-H2O system was performed using a quantum-chemical method B3LYP/6-31G(d,p) for the simulation of the possible routes of the reactions and the estimation of the energy parameters: interaction energy between molecules in complexes, activation energy of forward and reverse reactions, and the heat of the reaction. A new version of termolecular reaction mechanism is proposed and investigated. The probability of realization of various paths of interaction in the NH3-CO2-H2O system was shown to be determined by the temperature: at low temperatures the termolecular mechanism is more probable, while at the temperatures close to the standard conditions carbamate and bimolecular mechanisms are preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murin, V.I., Kislenko, N.N., Surkov, Yu.V., Afanas’ev, A.I., Afanas’ev, Yu.M., Bekirov, T.M., Barsuk, S.D., Blinov, V.V., Grunval’d, V.R., Ismailova Kh.I., Nabokov, S.V., Nabutovskii, Z.A., Podlegaev, N.I., Stryuchkov, V.M., and Fishman, L.L., Tekhnologiya pererabotki prirodnogo gaza i kondensata (Technology of Procesing Natural Gas and Condensate), Moscow: Nedra-Biznestsentr, 2002, Ch. 1, p. 517.

    Google Scholar 

  2. Spravochnik protsessov pererabotki gazov (Gas Processing Handbook), 2006, no. 8, p. 94; no. 9, p. 92.

  3. Kohl, A.L. and Nielsen, R.V., Gas Purification, Houston: Gulf Publishing Co., 1997, p. 900.

    Google Scholar 

  4. Kohl, A.L. and Risenfeld, F.C., Gas Purification, Moscow: Nedra, 1968, p. 392.

    Google Scholar 

  5. Versteeg, G.F., van Dijck, L.A.J., and van Swaaij, W.P.M., Chem. Eng. Commun., 1996, vol. 144, p. 113.

    Article  CAS  Google Scholar 

  6. Caplow, M., J. Am. Chem. Soc., 1968, vol. 90, p. 6795.

    Article  CAS  Google Scholar 

  7. Danckwerts, P.V., Chem. Eng. Sci., 1979, vol. 34, p. 443.

    Article  CAS  Google Scholar 

  8. Glasscock, D.A. and Rochelle, G.T., A. I. Ch. E. Journal, 1989, vol. 35, no. 8, p. 1271.

    Article  CAS  Google Scholar 

  9. Crooks, J.E. and Donnellan, J.P., J. Chem. Soc. Perkin Trans. 2, 1989, p. 331.

  10. Park H-S, Jung, Y.M., You, J.K., Hong, W.H., and Kim J-N., J. Phys. Chem. (A), 2008, vol. 112, no. 29, p. 6558.

    Article  CAS  Google Scholar 

  11. Ramachandran, B.R., Halpern, A.M., and Glendening, E.D., J. Phys. Chem. (A), 1998, vol. 102, p.3934.

  12. Artem’eva, E.L., Prosochkina, T.R., Kantor, E.A., and Matveev, D.I., Bash. Khim. Zh., 2004, vol. 11, no. 1, p. 100.

    Google Scholar 

  13. Arstad, B., Blom, R., and Swang, O., J. Phys. Chem. (A), 2007, vol. 111, p. 1222.

    Article  CAS  Google Scholar 

  14. Tsipis, C.A. and Karipidis, R.A., J. Phys. Chem. (A), 2005, vol. 109, p. 8560.

    Article  CAS  Google Scholar 

  15. Loerting, T., Tautermann, C., Kroemer, R.T., Kohl, I., Hallbrucker, A., Mayer, E., and Liedl, K.R., Angew. Chem. Int. Ed., 2000, vol. 39, no. 5, p. 892.

    Article  CAS  Google Scholar 

  16. Sadlej, J. and Mazurek, P., J. Mol. Struct. (THEOCHEM), 1995, vol. 337, no. 2, p. 129.

    Article  CAS  Google Scholar 

  17. Jena, N.R. and Mishra, P.C., Theoretica Chim. Acta, 2005, vol. 114, nos. 1–3, p. 189.

    Article  CAS  Google Scholar 

  18. Nguen, M.T., Matus, M.H., Jackson, V.E., Ngan, V.T., Rustad, J.R., Dixon, D.A., J. Phys. Chem. (A), 2008, vol. 112, p. 10386.

    Article  Google Scholar 

  19. Bickelhaupt, F.M. and Baerends, E.J., Rev. Comput. Chem., 2000, vol. 15, p. 1.

    Article  CAS  Google Scholar 

  20. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347.

    Article  CAS  Google Scholar 

  21. Granovsky, A.A., PC GAMESS version 7.1; http://classic.chem.msu.Su/gran/gamess/index.html .

  22. Scott, A.P. and Radom, L., J. Phys. Chem., 1996, vol. 100, no. 41, p. 16502.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Prosochkina.

Additional information

Original Russian Text © T.R. Prosochkina, E.L. Artem’eva, E.A. Kantor, 2013, published in Zhurnal Obshchei Khimii, 2013, Vol. 83, No. 1, pp. 13–17.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prosochkina, T.R., Artem’eva, E.L. & Kantor, E.A. Computer simulation of interactions in the NH3-CO2-H2O system. Russ J Gen Chem 83, 10–14 (2013). https://doi.org/10.1134/S1070363213010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363213010027

Keywords

Navigation