Skip to main content
Log in

Critical heat flux in microscale channels and confined spaces: A review on experimental studies and prediction methods

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

This paper presents a comprehensive literature review on critical heat flux (CHF) of flow boiling and pool boiling in micrscale channels and confined spaces. First, distinction between macro- and micro-scale channels is discussed. Then, the critical heat flux mechanisms are discussed. Next, experimental and theoretical studies of subcooled flow boiling CHF in microscale channels together with the prediction methods are reviewed. Following this, experimental and theoretical studies on saturated flow boiling CHF together with the prediction methods are summarized. Furthermore, experimental and theoretical studies on nucleate pool boiling CHF in confined spaces together with the prediction methods are briefly reviewed. So far, limited studies on CHF in microscale channels and confined spaces are available in the literature and there are numerous discrepancies in the existing studies on CHF results and mechanisms. There are no generalized prediction methods for CHF in microscale channels and confined spaces. According to this review, future research needs have been identified, including the frontier research of nanofluids CHF in microscale channels and confined spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kandlikar, S.G., Exp. Therm. Fluid Sci., 2002, vol. 26, p. 389.

    Article  CAS  Google Scholar 

  2. Kandlikar, S.G., Heat Transf., Eng., 2005, vol. 26, p. 5.

    Article  CAS  Google Scholar 

  3. Cheng, L. and Mewes, D., Int. J. Multiphase Flow, 2006, vol. 32, p. 183.

    Article  CAS  Google Scholar 

  4. Cheng, L., Ribatski, G., and Thome, J.R., ASME Appl. Mech. Rev., 2008, vol. 61, 050802-1–050802-28.

    Article  Google Scholar 

  5. Cheng, L., Ribatski, G., and Thome, J.R., Int. J. Refrig., 2008, vol. 31, p. 1301.

    Article  CAS  Google Scholar 

  6. Thome, J.R., Int. J. Heat Fluid Flow, 2004, vol. 25, p. 128.

    Article  CAS  Google Scholar 

  7. Thome, J.R., Heat Transf. Eng., 2006, vol. 27, p. 4.

    Article  CAS  Google Scholar 

  8. Cheng, L. and Thome, J.R., Appl. Therm. Eng., 2009, vol. 29, p. 2426.

    Article  CAS  Google Scholar 

  9. Cheng, L., Mewes, D., and Luke, A., Int. J. Heat Mass Transf., 2007, vol. 50, p. 2744.

    Article  CAS  Google Scholar 

  10. Cheng, L., E.P. Bandarra Filho, and Thome, J.R., J. Nanosci. Nanotech., 2008, vol. 8, p. 3315.

    Article  CAS  Google Scholar 

  11. Cheng, L., Recent Pat. Eng., 2009, vol. 3, p. 1.

    Article  CAS  Google Scholar 

  12. Lee, J. and Mudawar, I., Int. J. Heat Mass Transf., 2009, vol. 52, p. 3341.

    Article  CAS  Google Scholar 

  13. Celata, G.P., Cumo, M., and Mariani, A., Int. J. Heat Mass Transf., 1993, vol. 36, p. 1269.

    Article  CAS  Google Scholar 

  14. Celata, G.P., Cumo, M., Mariani, A., Nariai, H., and Inasaka, F., Int. J. Heat Mass Transf., 1993, vol. 36, p. 3407.

    Article  CAS  Google Scholar 

  15. Celata, G.P., Cumo, M., Mariani, A., Simoncini, M., and Zummo, G., J. Heat Mass Transf., 1994, vol. 37, p. 347.

    Article  CAS  Google Scholar 

  16. Celata, G.P., Cumo, M., and Mariani, A., Int. J. Heat Mass Transf., 1996, vol. 39, p. 1755.

    Article  CAS  Google Scholar 

  17. Mudawar, I. and Bowers, M.B., Int. J. Heat Mass Transf., 1999, vol. 42, p. 1405.

    Article  CAS  Google Scholar 

  18. Hall, D.D. and Mudawar, I., Int. J. Heat Mass Transf., 1999, vol. 42, p. 1429.

    Article  CAS  Google Scholar 

  19. Hall, D.D. and Mudawar, I., Int. J. Heat Mass Transf., 2000, vol. 43, p. 2573.

    Article  CAS  Google Scholar 

  20. Hall, D.D. and Mudawar, I., Int. J. Heat Mass Transf., 2000, vol. 43, p. 2605.

    Article  CAS  Google Scholar 

  21. Liu, W., Nariai, H., and Inasaka, F., Int. J. Heat Mass Transf., 2000, vol. 43, p. 3371.

    Article  CAS  Google Scholar 

  22. Kureta, M. and Akimoto, H., Int. J. Heat Mass Transf., 2002, vol. 45, p. 4107.

    Article  CAS  Google Scholar 

  23. Sarma, P.K., Srinivas, V., Sharma, K.V., Dharma Rao, V., and Celata, G.P., Int. J. Heat Mass Transf., 2006, vol. 49, p. 42.

    Article  CAS  Google Scholar 

  24. Zhang, H. Mudawar, I., and Hasan, M.M., Int. Commun. Heat Mass Transf., 2007, vol. 34, p. 653.

    Article  CAS  Google Scholar 

  25. Roday, A.P., Borca-Tasciuc, T., and Jensen, M.K., J. Heat Transf., 2008, vol. 130, 012901-1–012901-10.

    Article  Google Scholar 

  26. Roday, A.P. and Jensen, M.K., Int. J. Heat Mass Transf., 2009, vol. 52, p. 3225.

    Article  Google Scholar 

  27. Roday, A.P. and Jensen, M.K., Int. J. Heat Mass Transf., 2009, vol. 52, p. 3250.

    Article  CAS  Google Scholar 

  28. Bergles, A.E. and Kandlikar, S.G., ASME J. Heat Transf., 2005, vol. 127, p. 101.

    Article  Google Scholar 

  29. Katto, Y. and Ohno, H., Int. J. Heat and Mass Transf., 1984, vol. 27, p. 1641.

    Article  CAS  Google Scholar 

  30. Lazarek, G.M. and Black, G.M., Int. J. Heat Mass Transf., 1982, vol. 25, p. 945.

    Article  CAS  Google Scholar 

  31. Oh, C.H. and Englert, S.B., Int. J. Heat Mass Transf., 1993, vol. 36, p. 325.

    Article  CAS  Google Scholar 

  32. Bowers, M.B. and Mudawar, I., Int. J. Heat Mass Transf., 1994, vol. 37, p. 321.

    Article  CAS  Google Scholar 

  33. Jiang, L., Wong, M., and Zohar, Y., J. Microelectromech. Syst., 1999, vol. 8, no. 4, p. 358.

    Article  CAS  Google Scholar 

  34. Qu, W. and Mudawar, I., Int. J. Heat and Mass Transf., 2004, vol. 47, p. 2045.

    Article  CAS  Google Scholar 

  35. Wojtan, L., Revellin, R., and Thome, J.R., Exp. Therm. Fluid Sci., 2006, vol. 30, p. 765.

    Article  CAS  Google Scholar 

  36. Zhang, W., Hibiki, T., Mishima, K., and Mi, Y., Int. J. Heat Mass Transf., 2006, vol. 49, p. 1058.

    Article  CAS  Google Scholar 

  37. Qi, S.L., Zhang, P., Wang, R.Z., and Xu, L.X., Int. J. Heat Mass Transf., 2007, vol. 50, p. 5017.

    Article  CAS  Google Scholar 

  38. Wright, C.T., O’Brien, J.E., and Spall, R.E., Int. J. Heat Mass Transf., 2008, vol. 51, p. 1071.

    Article  CAS  Google Scholar 

  39. Tanaka, F., Hibiki, T., and Mishima, K., J. Heat Transf., 2009, vol. 131, 121003-1–121003-7.

    Article  Google Scholar 

  40. Kosar, A. and Peles, Y., J. Heat Transf., 2007, vol. 129, p. 844.

    Article  CAS  Google Scholar 

  41. Kuo, C.J. and Peles, Y., J. Heat Transf., 2008, vol. 130, 072403-1–072403-7.

    Google Scholar 

  42. Wu, Y.W., Su, G.H., Qiu, S.Z., and Hu, B.X., Int. J. Multiphase Flow, 2009, vol. 35, p. 977.

    Article  CAS  Google Scholar 

  43. Revellin, R. and Thome, J.R., Int. J. Heat Mass Transf., 2008, vol. 51, p. 1216.

    Article  CAS  Google Scholar 

  44. Agostini, B., Revellin, R., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., and Kloter, U., Int. J. Heat Mass Transf., 2008, vol. 51, p. 5426.

    Article  CAS  Google Scholar 

  45. Park, J.E. and Thome, J.R., Int. J. Heat Mass Transf., 2010, vol. 53, p. 110.

    Article  CAS  Google Scholar 

  46. Muaro, A.W., Thome, J.R., Toto, D., and Vanoli, G.P., Exp. Therm. Fluid. Sci., 2010, vol. 34, p. 81.

    Article  Google Scholar 

  47. Kosar, A., Int. J. Thermal Sci., 2009, vol. 48 p. 261.

  48. Patankar, U. and Puranik, B., Proc. Fourth Int. Conf. on Nanochannels, Microchannels, and Minichannels, Rochester, New York, 2003, ICMM2003-1016.

    Google Scholar 

  49. Roach, G.M. Jr., Abdel_Khalik, S.I., Ghiaasiaan, S.M., Dowling, M.F., and Jeter, S.M., Nucl. Sci. Eng., 1999, vol. 131, p. 411.

    CAS  Google Scholar 

  50. Bergles, A.E. and Rohsenow, W.M., Forced-Convection Surface-Boiling Heat Transf., and Burnout in Tubes of Small Diameter, Contract AF 19(604)-7355 Report, Department of Mechanical Engineering, Massachusetts Institute of Technology, 1962.

  51. Yu, W., France, D.M., Wambsganss, M.W., and Hull, J.R., Int. J. Multiphase Flow, 2002, vol. 28, p. 927.

    Article  CAS  Google Scholar 

  52. Katto, Y. and Kosho, Y., Int. J. Multiphase Flow, 1979, vol. 5, p. 219.

    Article  CAS  Google Scholar 

  53. Monde, M., Kusuda, H., and Uehara, H., ASME J. Heat Transf., 1982, vol. 104, p. 300.

    Article  CAS  Google Scholar 

  54. Fujita, Y., Ohta, H., and Uchida, S., Int. J. Heat Mass Transf., 1988, vol. 31, p. 229.

    Article  CAS  Google Scholar 

  55. Kim, S.H., Baek, W.P., and Chang, S.H., Nucl. Eng. Design, 2000, vol. 199, p. 41.

    Article  CAS  Google Scholar 

  56. Chyu, M.C., Int. J. Heat Mass Transf., 1988, vol. 31, p. 1993.

    Article  CAS  Google Scholar 

  57. Kim, Y.H. and Suh, K.Y., Nucl. Eng. Design, 2003, vol. 226, p. 277.

    Article  CAS  Google Scholar 

  58. Miscale, M., Gugliemini, G., and Priarone, A., Int. J. Refrig., 2009, vol. 32, p. 235.

    Article  Google Scholar 

  59. Geisler, K.J.L. and Bar-Cohen, A., Int. J. Heat Mass Transf., 2009, vol. 52, p. 2427.

    Article  CAS  Google Scholar 

  60. Bonjour J. and Lallemand, M., Int. Commun. Heat Mass Transf., 1997, vol. 24, no. 2, p. 191.

    Article  CAS  Google Scholar 

  61. Kuan, W.K. and Kandlikar, S.G., J. Heat Transf., 2008, vol. 130, 034503-1–034503-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Cheng.

Additional information

Original Russian Text © Lixin Cheng, 2011, published in Rossiiskii Khimicheskii Zhurnal, 2011, Vol. 55, No. 2, pp. 85–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, L. Critical heat flux in microscale channels and confined spaces: A review on experimental studies and prediction methods. Russ J Gen Chem 82, 2116–2131 (2012). https://doi.org/10.1134/S1070363212120328

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363212120328

Keywords

Navigation